화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.4, 363-369, August, 2009
글리세롤 유도체의 최근 연구 동향
Recent Studies on New Value-added Glycerol Derivatives
E-mail:
초록
오일 가격의 폭등에 따른 바이오디젤 사용량의 증가로 인해 글리세롤 부산물의 공급과잉이 유발되었다. 원래 글리세롤은 석유화학,페인트,담배, 생활용품 및 화장품 분야에 원료자체로써 사용되어 왔다. 최근에는 글리세롤을 값싼 원료로 사용하여 고부가가치의 기능성 물질을 개발하는 응용 연구를 통해 고부가가치의 유도체 물질로 상용화되는 사례가 많이 보고되고 있다. 본 총설에서는 글리세롤을 원료로 사용하여 새로운 고부가 글리세롤 유도체로 개발한 연구동향을 검토해 보았다.
High oil price and biodiesel expansion lead the surplus of glycerol in the market. Glycerol has been used as a raw material itself at petroleum chemistry, paint, tobacco, household products and cosmetics in the conventional market. Recently, many research to find new applications of glycerol as a low-cost feedstock for functional derivatives have led to the introduction of a number of selective processes for converting glycerol into commercially value-added products. The recent studies on the development of new value-added glycerol derivatives will be reviewed.
  1. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD, Angew. Chem. Int. Ed., 46, 4434 (2007)
  2. Bozell J, Oleochemicals as a Feedstock for Biorefinery, National Renewable Energy Laboratory, August 18 (2004)
  3. Noureddini H, Dailey WR, Hunt BA, Production of ethers of glycerol from clued glycerol the by-product of biodiesel production, Chemical and Biomolecular Engineering Research and Publications Papers in Biomaterials (1998)
  4. 國際商業, June, 131 (2007)
  5. ICIS pricing (2007), http://www.icispricing.com
  6. Tyson KS, Biodiesel R&D Potential, National Renewable Energy Lab. Montana Biodiesel Workshop (2003)
  7. P&G News Release, December (2004)
  8. Claude S, Fett/Lipid, 101, 101 (1999)
  9. Ciriminna R, Pagliaro M, Adv. Synth. Catal., 345, 383 (2003)
  10. Demirel-Gulen S, Lucas M, Claus P, Catal. Today, 102, 166 (2005)
  11. Fordham P, Besson M, Gallezot P, Appl. Catal. A: Gen., 133(2), L179 (1995)
  12. Garcia R, Besson M, Gallezot P, Appl. Catal. A: Gen., 127(1-2), 165 (1995)
  13. Ketchie WC, Murayama M, Davis RJ, J. Catal., 250(2), 264 (2007)
  14. Ciriminna R, Palmisano G, Pina CD, Rossi M, Pagliaro M, Tetrahedron Letters, 47, 6993 (2006)
  15. Kimura H, Tsuto K, Wakisaka T, Kazumi Y, Inaya Y, Applied Catal. A, 96, 217 (1993)
  16. Kimura H, J. Polym. Sci. A: Polym. Chem., 34(17), 3595 (1996)
  17. Kimura H, J. Polym. Sci. A: Polym. Chem., 36(1), 195 (1998)
  18. U. S Patent 5308365 (1994)
  19. U. S Patent 5476971 (1995)
  20. Klepacova K, Mravec D, Hahekova E, Bajus M, Petroleum and Coal, 45, 54 (2003)
  21. Klepacova K, Mravec D, Bajus M, Appl. Catal. A: Gen., 294(2), 141 (2005)
  22. U. S Patent 7141102 B2 (2006)
  23. U. S Patent 0038159 A1 (2006)
  24. U. S Patent 0244312 A1 (2005)
  25. U. S Patent 0164470 A1 (2003)
  26. Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K, J. Catal., 240(2), 213 (2006)
  27. Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ, Appl. Catal. A: Gen., 281(1-2), 225 (2005)
  28. U. S Patent 5387720 (1995)
  29. Tsukuda E, Sato S, Takahashi R, Sodesawa T, J. Catalysis, 8, 1349 (2007)
  30. Chai SH, Wang HP, Liang Y, Xu BQ, J. Catal., 250(2), 342 (2007)
  31. Soares RR, Simonetti DA, Dumesic JA, Angew. Chem. Int. Ed., 45, 3982 (2006)
  32. Simonetti DA, Hansen JR, Kunkes EL, Soares RR, Dumesic JA, Green Chemistry
  33. Chemical Toxicology, July 13th, News (2007)
  34. Nalampang K, Johnson AF, Polymer, 22, 6103 (2003)
  35. Villegas CG, J. Biotechnology, 131S, S102 (2007)
  36. Cho MH, Joen SI, Pyo SH, Mun S, Kim JH, Process Biochemistry, 41, 739 (2006)
  37. Sunder A, Mulhaupt R, Haag R, Frey H, Macromolecules, 33(2), 253 (2000)
  38. Sunder A, Hanselmann R, Frey H, Mulhaupt R, Macromolecules, 32(13), 4240 (1999)
  39. Japan Patent 特開2001-151969
  40. Clacens JM, Pouilloux Y, Barrault J, Appl. Catal. A: Gen., 227(1-2), 181 (2002)
  41. U. S Patent 6162774 (2000)
  42. U. S Patent 6949492 B2 (2005)