화학공학소재연구정보센터
Macromolecular Research, Vol.17, No.9, 646-650, September, 2009
Synthesis of Fluorinated Polymer Gate Dielectric with Improved Wetting Property and Its Application to Organic Field-Effect Transistors
E-mail:
We report the fabrication of pentacene organic field-effect transistors (OFETs) using a fluorinated styrene-alt-maleic anhydride copolymer gate dielectric, which was prepared from styrene derivatives with a fluorinated side chain [-CH2-O-(CH2)2-(CF2)5CF3] and maleic anhydride through a solution polymerization technique. The fluorinated side chain was used to impart hydrophobicity to the surface of the gate dielectric and maleic anhydride was employed to improve its wetting properties. A field-effect mobility of 0.12 cm2/Vs was obtained from the as-prepared top-contact pentacene FETs. Since various functional groups can be introduced into the copolymer due to the nature of maleic anhydride, its physical properties can be manipulated easily. Using this type of copolymer, the performance of organic FETs can be enhanced through optimization of the interfacial properties between the gate dielectric and organic semiconductor.
  1. Veres J, Orier S, Lloyd G, Chem. Mater., 16, 4543 (2004)
  2. Xu M, Nagai K, Nakamura M, Kudo K, Lizuka M, Appl. Phys. Lett., 90, 223512 (2007)
  3. Hamilton M, Martin S, Kanicki J, Chem. Mater., 16, 4699 (2004)
  4. Chou WY, Kuo CW, Cheng HL, Mai YS, Lin ST, Liao CC, Chang CC, Tang FC, Hwang JS, Chem. Mater., 16, 4610 (2004)
  5. Yang YS, Zyung T, Macromol. Res., 88, 072101 (2006)
  6. Drury CJ, Mutsaers CMJ, Hart CM, Matters M, deLeeuw DM, Appl. Phys. Lett., 73, 108 (1998)
  7. Shin K, Yang S, Yang C, Jeon H, Park C, Appl. Phys. Lett., 91, 023508 (2007)
  8. Sirringhaus H, Tessler N, Friend RH, Synth. Met., 102, 857 (1999)
  9. Doremus RH, Glass Science, John Wiley and Sons Inc., New York, Chapter 11 (1994)
  10. Lin YY, Gundlach DJ, Nelson SF, Jackson TN, IEEE Trans. Electron Devices, 18, 606 (1997)
  11. Salleo A, Chabinyc ML, Yang MS, Street RA, Appl. Phys. Lett., 81, 4383 (2002)
  12. Sirringhaus H, Tessler N, Friend RH, Synth. Met., 102, 857 (1999)
  13. Gorjanc TC, Levesque I, Dlorio M, Appl. Phys. Lett., 84, 930 (2004)
  14. Shankar K, Jackson TN, J. Mater. Res., 19, 2003 (2004)
  15. Gundlach DJ, Kuo CCS, Sheraw C, Nicols JA, Jackson TN, Proc. SPIE 2001, 3366, p 54
  16. Majewski LA, Scheroeder R, Grell M, Glarvey PA, Turner ML, J. Appl. Phys., 96, 5781 (2004)
  17. Knipp D, Street RA, Volkel A, Ho J, J. Appl. Phys., 93, 347 (2003)
  18. Lin YY, Gundlach DJ, Nelson SF, Jackson TN, IEEE Trans. Electron Devices, 44, 1325 (1997)
  19. Gorjanc TC, Levesque I, D'iorio M, J. Vac. Sci. Technol. A, 22(3), 760 (2004)
  20. Pyo KS, Song CK, Thin Solid Films, 485(1-2), 230 (2005)
  21. Shtein M, Mapel J, Benziger JB, Forrest SR, Appl. Phys. Lett., 81, 268 (2002)
  22. Scheinert S, Paasch G, Schrodner M, Roth HK, Sensfub S, J. Appl. Phys., 92, 330 (2002)
  23. Klauk H, Halik M, Zschieschang U, Eder F, Schmid G, Dehm C, Appl. Phys. Lett., 82, 4175 (2003)
  24. Horowitz G, Deloffre F, Garnier F, Hajlaoui R, Hmyene M, Yassar A, Synth. Met., 54, 435 (1993)
  25. Schroeder R, Majewski LA, Grell M, Appl. Phys. Lett., 84, 1004 (2004)
  26. Pyo SM, Lee Y, Jeon J, Yi M, Kwon S, J. Appl. Phys., 99, 073711 (2006)
  27. Pyo SM, Choi J, Oh Y, Son H, Yi M, Appl. Phys. Lett., 88, 173501 (2006)
  28. Sheraw CD, Gundlach DJ, Jackson TN, MRS Proc., 558, 403 (2000)
  29. Veres J, Ogier S, Lioyd G, de Leeuw D, Chem. Mater., 16, 4543 (2004)
  30. Kalb WL, Mathis T, Haas S, Stassen AF, Batlogg B, Appl. Phys. Lett., 90, 092104 (2007)
  31. Zeng W, Shirota Y, Macromolecules, 22, 4204 (1989)
  32. Cowie JMG, Alternating Copolymers, Plenum, New York, Chap. 3 (1985)
  33. Liu T, Fang J, Zhang Y, Zeng Z, Macromol. Res., 16(8), 670 (2008)
  34. Lee H, Tae G, Kim YH, Macromol. Res., 16(7), 614 (2008)
  35. Baruah SD, Laskar NC, J. Appl. Polym. Sci., 60(5), 649 (1996)
  36. Mathew A, Deb PC, J. Polym. Sci. A: Polym. Chem., 34(8), 1605 (1996)