화학공학소재연구정보센터
Macromolecular Research, Vol.17, No.9, 703-708, September, 2009
Beneficial Effects of Microwave-Induced Argon Plasma Treatment on Cellular Behaviors of Articular Chondrocytes Onto Nanofibrous Silk Fibroin Mesh
E-mail:
Silk fibroin scaffolds were examined as a biomaterial option for tissue-engineered cartilage-like tissue. In tissue engineering for cartilage repair using a scaffold, initial chondrocyte-material interactions are important for the following cell behaviors. In this study, the surface of nanofibrous silk fibroin (NSF) meshes was modified by a microwave-induced argon plasma treatment in order to improve the cytocompatibility of the meshes used as cartilaginous grafts. In addition, the effects of a plasma treatment on the cellular behavior of chondrocytes on NSF were examined. The plasma treatment resulted in an increase in the hydrophilicity of NSF meshes suggesting that the cytocompatibility of the mesh might be improved. Furthermore, the human articular chondrocytes showed higher viability on the surface-modified NSF meshes. These results suggest that the surface modification of NSF meshes by plasma can enhance the cellular behavior of chondrocytes and may be used in tissue engineering.
  1. Ozcan C, Hasirci N, J. Biomater. Sci. Polym. Ed., 18, 759 (2007)
  2. Pesskova V, Kubies D, Hulejova H, Himmlova L, J. Mater. Sci. Mat. Med., 18, 465 (2007)
  3. Keselowsky G, Collard DM, Garcia AJ, Proc. Natl. Acad. Sci. U.S.A., 102, 5953 (2005)
  4. Williams SF, Martin DP, Horowitz MD, Peoples OP, Int. J. Biol. Macromol., 25, 111 (1999)
  5. Sacristan J, Reinecke H, Mijangos C, Polymer, 41(15), 5577 (2000)
  6. Sheu MS, Hoffman AS, Feijen J, J. Adhesion Sci. Technol., 6, 995 (1992)
  7. Chan-Park MB, Zhang J, Gao JX, Liu EJ, J. Adhesion Sci. Technol., 16, 1883 (2002)
  8. Sun X, Liu J, Lee ML, J. Appl. Polym. Sci. Anal. Chem., 80, 856 (2008)
  9. Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V, Kaplan D, J. Biomed. Mater. Res. A, 71, 528 (2004)
  10. Lee KH, Baek DH, Ki CS, Park YH, Int. J. Biol. Macromol., 41, 168 (2007)
  11. Park BJ, Lee DH, Park JC, Lee IS, Lee KY, Hyun SO, Chun MS, Chung KH, Phys. Plasmas, 10, 4539 (2003)
  12. Lee KY, Park BJ, Lee DH, Lee IS, Hyun SO, Chung KH, Park JC, Surf. Coat. Technol., 193, 35 (2005)
  13. Jeong L, Yeo IS, Kim HN, Yoon YI, Jang DH, Jung SY, Min BM, Park WH, Int. J. Biol. Macromol., 44, 222 (2009)
  14. Chen JY, Wan GJ, Leng YX, Yang P, Sun H, Wang J, Huang N, Surf. Coat. Technol., 186, 270 (2004)
  15. Yokota T, Terai T, Kobayashi T, Meguro T, Iwaki M, Surf. Coat. Technol., 201, 8048 (2007)
  16. Jin HJ, Kaplan DL, Nature, 424, 1057 (2003)
  17. Aoki H, Tomita N, Morita Y, Hattori K, Harada Y, Sonobe M, Wakitani S, Tamada Y, Biomed. Mater. Eng., 13, 309 (2003)
  18. Hofmann S, Knecht S, Stussi E, Langer R, Kaplan D, Vunjak-Novakovic G, Merkle HP, Meinel L, Tissue Eng., 12, 2729 (2006)
  19. Wang Y, Blasioli DJ, Kim HJ, Kim HS, Kaplan DL, Biomaterials, 27, 4434 (2006)
  20. Lin L, Zhou C, Wei X, Hou Y, Zhao L, Fu X, Zhang J, Yu C, Arthritis Rheum, 58, 1067 (2008)