화학공학소재연구정보센터
Polymer(Korea), Vol.33, No.5, 407-412, September, 2009
PEDOT-PSS/NPD-C60 정공 주입/수송 층이 도입된 유기발광소자의 성능 향상 연구
Enhanced Efficiency of Organic Electroluminescence Diode Using PEDOT-PSS/NPD-C60 Hole Injection/Transport Layers
E-mail:
초록
발광소자(OLED)에서 정공 수송층(hole injection layer, HIL)으로 사용되는 N,N′-di-1-naphthyl- N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPD)가 정공 주입층(hole injection layer, HIL)으로 사용된 PEDOT-PSS 층 위로 진공 증착되었다. PEDOT-PSS 층은 ITO 유리 위에 스핀 코팅되어 제조되었다. 또한, NPD와 C60의 공증착에 의해 C60이 약 10 wt% 도핑된 NPD-C60 층을 제조하였으며, AFM과 XRD를 이용하여 NPDC60 박막의 모폴로지 특성을 관찰하였다. 다층 소자를 제조하여 J-V, L-V 및 전류 효율 특성이 고찰되었다. C60 박막은 국부적인 결정성 구조를 가지고 있으나, NPD-C60 박막에서는 C60 분자가 균일하게 분산되어 C60의 결정성 구조가 확인되지 않았다. 또한, C60의 도핑에 의해서 박막의 표면이 균일해지는 것을 확인하였으며, 박막 내의 전류 밀도가 증가됨을 확인하였다. NPD-C60 박막을 이용하여 ITO/PEDOT-PSS/NPD-C60/Alq3/LiF/Al 다층 소자를 제조하였을 때, 소자의 휘도 측면에서 약 80% 향상 효과가 있었으며, 소자 효율 측면에서도 약 25%의 향상을 기대할 수 있었다.
Vacuum deposited N,N′-di-1-naphthyl-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPD) as a hole transporting (HTL) materials in OLEDs was placed on PEDOT-PSS, a hole injection layer (HIL). PEDOT-PSS was spin-coated on to the ITO glass. C60-doped NPD-C60(10 wt%) film was formed via co-evaporation process and the morphology of NPD-C60 films was investigated using XRD and AFM. The J-V, L-V and current efficiency of multi-layered devices were characterized. According to XRD results, the deposited C60 thin film was partially crystalline, but NPD-C60 film was observed not to be crystalline, which indicates that C60 molecules are uniformly dispersed in the NPD film. By using C60-doped NPD-C60 film as a HTL, the current density and luminance of multi-layered ITO/PEDOT-PSS/NPD-C60/Alq3/LiF/Al device were significantly increased by about 80% and its efficiency was improved by about 25% in this study.
  1. Tang CW, VanSlyke SA, Appl. Phys. Lett., 51, 913 (1987)
  2. Baldo MA, O'Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR, Nature, 395(6698), 151 (1998)
  3. Rand BP, Xue J, Uchida S, Forrest SR, Appl. Phys. Lett., 98, 124902 (2005)
  4. Shaheen SE, Brabec CJ, Sariciftci NS, Appl. Phys. Lett., 78, 841 (2001)
  5. Schultes SM, Sullivan P, Heutz S, Sanderson BM, Jones TS, Mater. Sci. Eng. C, 25, 858 (2005)
  6. Drechsel J, Mannig B, Kozlowski F, Gebeyehu D, Werner A, Koch M, Leo K, Pfeiffer M, Thin Solid Films, 451, 515 (2004)
  7. Gebeyehu D, Maennig B, Drechsel J, Leo K, Pfeiffer M, Sol. Energy Mater. Sol. Cells, 79, 81 (2003)
  8. Tripathi V, Datta D, Samal GS, Awasthi A, Kumar S, J. Non-Cryst. Sol., 354, 2901 (2008)
  9. Xue J, Rand BP, Uchida S, Forrest SR, Appl. Phys. Lett., 98, 124903 (2005)
  10. Hadziioannou G, van Hutten PF, Editors, Semiconducting Polymers: Chemistry, Physics and Engineering, Wiley-VCH, Verlag GmbH, Weinheim(Federal Republic of Germany) (2000)
  11. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789 (1995)
  12. Peumans P, Bulovic V, Forrest SR, Appl. Phys. Lett., 76, 2650 (2000)
  13. Burn PL, Bradley DDC, Friend RH, Halliday DA, Holmes AB, Jackson RW, Kraft A, J. Chem. Soc., 1, 3225 (1992)
  14. Askari SH, Rughooputh SD, Wudl F, Synth. Met., 29, 129 (1989)
  15. Brandon KL, Bently PG, Bradley DDC, Dunmur DA, Synth. Met., 91, 305 (1997)
  16. Jung ES, Cho EH, Chung PJ, J. Korean Ind. Eng. Chem., 9(4), 548 (1998)
  17. El-Nahass MM, El-Gohary Z, Soliman HS, Opt. Laser Tech., 35, 523 (2003)
  18. Yuan Y, Grozea D, Lua ZH, J. Appl. Phys., 86, 143509 (2005)
  19. Khrishnakumar KP, Menon CS, Mater. Lett., 48, 64 (2001)
  20. Yanagiya S, Nishikata S, Sazaki G, Hoshino A, Nakajima K, Inoue T, J. Cryst. Growth, 254(1-2), 244 (2003)
  21. Padinger F, Rittberger RS, Sariciftci NS, Adv. Funct. Mater., 13(1), 85 (2003)
  22. Dittmer JJ, Lazzaroni R, Leclere P, Moretti P, Granstrom M, Petritsch K, Marseglia EA, Friend RH, Bredas JL, Rost H, Holmes AB, Sol. Energy Mater. Sol. Cells, 61(1), 53 (2000)
  23. Geens W, Aernouts T, Poortmans J, Hadziioannou G, Thin Solid Films, 438, 403 (2002)
  24. Geens W, Shaheen SE, Wessling B, Brabec CJ, Poortmans J, Sariciftci NS, Org. Electron., 3, 105 (2002)
  25. Martens T, D’Haen J, Munters T, Beelen Z, Goris L, Manca J, D’Olieslaeger M, Vanderzande D, De Schepper L, Andriessen R, Synth. Met., 138, 243 (2003)
  26. Drees M, Premaratne K, Graupner W, Heflin JR, Davis RM, Marciu D, Miller M, Appl. Phys. Lett., 81, 4607 (2002)
  27. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789 (1995)
  28. Xue JG, Rand BP, Uchida S, Forrest SR, Adv. Mater., 17(1), 66 (2005)
  29. Boamfa MI, Christianen PCM, Maan JC, Engelkamp H, Nolte RJM, Physcia B, 294, 343 (2001)
  30. Ji ZG, Wong KW, Tse PK, Kwok RWM, Lau WM, Thin Solid Films, 402(1-2), 79 (2002)
  31. Giebeler C, Antoniadis H, Bradley DDC, Shirota Y, J. Appl. Phys., 85, 1608 (1999)
  32. Chen BJ, Sun XW, Wong TKS, Hu X, Uddin A, Appl. Phys. Lett., 84, 063505 (2005)
  33. Lee JY, Jang HK, J. Appl. Phys., 88, 183502 (2006)
  34. Yuan Y, Han S, Grozea D, Lu ZH, Appl. Phys. Lett., 88, 093603 (2006)
  35. Grill A, Cold Plasma in Materials Fabrication . From Fundamentals to Applications, John Wiley & Sons, New York (1994)
  36. Burroughes JH, Bradley DDC, Brown AR, Marks RN, MacKay K, Freind RH, Burn PL, Holmes AB, Nature, 347, 539 (1990)
  37. Kang DS, Choe Y, J. Korean Ind. Eng. Chem., 18(5), 506 (2007)
  38. Oh S, Kang DS, Park DW, Choe YS, Sol. State Phen., 124, 427 (2007)
  39. Oh S, Cho YS, Park DW, Choe YS, Macromol. Sym., 249, 8 (2007)
  40. Choe YS, Park SY, Park DW, Kim WH, Macromol. Res., 140, 38 (2006)