Polymer(Korea), Vol.33, No.5, 469-476, September, 2009
생분해성을 갖는 초다공성 수화젤의 제조 및 특성분석
Preparation and Characterization of Biodegradable Superporous Hydrogels
E-mail:
초록
본 연구에서는 속팽윤성과 고흡수성을 갖는 초다공성 수화젤의 제조과정에서 생분해성 가교제를 이용하여 생분해성 초다공성 수화젤을 제조하고 특성분석을 수행하였다. 친수성 고분자인 poly(ethylene glycol)의 양말단에 D,L-lactide를 개환 중합시켜 PLA-PEG-PLA 삼중공중합체를 합성한 뒤, 양 말단에 비닐기를 도입하여 생분해성 가교제를 합성하였다. 조성이 다양한 초다공성 수화젤을 제조하여 각각의 팽윤도, 팽윤속도 및 생분해성을 비교하였다. 중합된 고분자의 화학적 조성을 1H-NMR, GPC, FT-IR 측정을 통해 확인하였고, 수화젤 표면 및 내부의 SEM 분석을 통해 수 백 μm 크기의 공극들로 생성된 열린 채널구조의 초다공성 구조를 관찰하였다. 수은 다공도계로 수화젤의 기공크기와 다공도를 측정하였고, 조성에 따라 물리화학적 성질이 조절될 수 있음을 알 수 있었으며, MTT분석에 의해 낮은 세포독성을 나타냄을 확인하였다.
In this study, biodegradable superporous hydrogels(SPHs) with fast swelling and superabsorbent
properties were prepared using biodegradable crosslinkers and their physicochemical properties were characterized. A biodegradable crosslinker (PLA-PEG-PLA DA) was synthesized by a ring opening polymerization of D,L-lactide (LA) using hydrophilic poly(ethylene glycol) as a macroinitiator, followed by diacrylation of the end groups for the introduction of polymerizable vinyl groups. Various kinds of hydrogels with different chemical compositions were prepared and characterized in terms of swelling ratio, swelling kinetics, and biodegradation properties. The synthetic results were confirmed by 1H-NMR, FT-IR and GPC measurements, and the porous structures of the prepared SPHs and their porosities were identified by a scanning electron microscope and mercury porosimetry, respectively. The physicochemical properties of SPHs could be controlled by varying their chemical compositions and their cytotoxicity were found to be very low by MTT assay.
- Park K, Shalaby WSW, Park H, Biodegradable hydrogels for drug delivery, Technomic Publishing Co., Lancaster (1993)
- Omidian H, Rocca JG, Park K, J. Control. Release, 102, 3 (2005)
- Huh KM, Baek N, Park K, J. Bioact. Compat. Pol., 20, 231 (2005)
- Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ, Eur. Polym. J., 39, 1341 (2003)
- Kato N, Gehrke SH, Colloids Surf. B: Biointerfaces, 38, 191 (2004)
- Park K, Park H, U.S. Patent 5,352,448 (1998)
- Chen J, Park H, Park K, Biomed. Mater. Res., 44, 53 (1999)
- Bajpai SK, Bajpai M, Sharma L, J. Macromol. Sci. Pure Appl. Chem., 43, 507 (2006)
- Spiller KL, Laurencin SJ, Charlton D, Maher SA, Lowman AM, Acta Biomat., 4, 17 (2008)
- Kabiri K, Zohuriaan-Mehr MJ, Macromol. Mater. Eng., 289, 653 (2004)
- Yin L, Fei L, Cui F, Tang C, Yin C, Biomaterials, 28, 1258 (2007)
- Omidian H, Rocca JG, Park K, Macromol. Biosci., 6, 703 (2006)
- Park K, Drug Deliv. Technol., 2(5), July/August (2002)
- Chen J, Blevins WE, Park H, Park K, J. Control. Release, 64, 39 (2000)
- Dorkoosh FA, Verhoef JC, Borchad G, Rafiee-Tehrani M, Verheijden JHM, Junginger HE, Int. J. Pharm., 247, 47 (2002)
- Im SJ, Choi YM, Subramanyam E, Huh KM, Park K, Macromol. Res., 15(4), 363 (2007)
- Ha JH, Kim SH, Han SY, Sung YK, Lee YM, Kang IK, Cho CS, J. Control. Release, 49, 253 (1997)
- Hennink WE, van Nostrum CF, Adv. Drug Deliver. Rev., 54, 13 (2002)
- Im JH, Lee YK, Huh KM, Polym.(Korea), 32(2), 143 (2008)
- He G, Ma LL, Pan J, Venkatraman S, Int. J. Pharm., 334, 48 (2007)
- Geever LM, Cooney CC, Lyons JG, Kennedy JE, Nugent MJD, Devery S, Higginbotham CL, Eur. J. Pharm. Biopharm., 69, 1147 (2008)