화학공학소재연구정보센터
Polymer(Korea), Vol.20, No.4, 650-657, July, 1996
인산코팅된 탄소섬유를 이용한 탄소섬유/페놀수지 복합재료의 열적 및 기계적특성의 향상
Improvement of Thermal and Mechanical Properties of Carbon Fiber/Phenolic Composites by Using H3PO4-Coated Carbon Fibers
초록
회석인산용액을 PAN계 탄소섬유에 미리 코팅처리한 것과 코팅하지 않은 프리프레그를 이용하여 제조한 2-D 탄소섬유/페놀수지 복합재료의 온도에 따른 공기중에서의 안정성과 산화거동을 열중량분석기를 사용하여 dynamic과 isothermal 방법으로 비교, 관찰하였다. 두 복합재료의 열분해온도에 대한 팽창과 수축거동을 열기계분석기를 사용하여 질소분위기에서 조사하였다. 탄소섬유 복할재료 제조시 인산코팅된 탄소섬유의 사용이 특히 고온에서의 복합재료의 열저항성과 산화저항성을 크게 향상시키는 결과를 얻었다. 또한, 인산코팅된 탄소섬유를 이용하여 제조한 복합재료의 층간전단강도와 굴곡강도를 각각 23.4%와 14.5% 향상시켰다. 이러한 열적, 기계적특성 향상에 대한 설명은 미세구조 관찰 결과와 함께 제시되었다.
Carbon fiber/phenolic prepregs were prepared using PAN-based carbon fabrics with a pre-coating in a dilute solution of phosphoric acid and without a coating. Thermal stability and oxidation behavior according to temperature in air for the uncoated and coated 2-D carbon fiber/phenolic composites fabricated with these prepregs were studied by dynamic and isothermal thermogravimetric analyses. Behavior of thermal expansion and contraction for the two types of the composite was examined in N2 atmosphere using a thermo-mechanical analyzer. As a result, use of the coated carbon fiber to process the carbon fiber reinforced composite material effectively improved thermal and oxidation resistances of the composite, especially at higher temperatures. With introduction of this coating technology, interlaminar shear strength and flexural strength of the composite were also improved about 23.4% and 14.5%, respectively. The explanation of the improvement on thermal and mechanical properties will be also provided with the result of microscopic observations in the present work.
  1. Schwartz MM, "Composite Materials Handbook," 2nd Ed., McGraw-Hill, Inc., New York (1992)
  2. Bleay SM, Scott VD, Carbon, 29, 871 (1991) 
  3. Savage G, "Carbon-Carbon Composites," Chap. 6, Chapman & Hall, London (1993)
  4. Sutton K, NASA Technical Note, NASA TN D-5930 (1970)
  5. Dhami TL, Bahl OP, Awasthy BR, Carbon, 33, 479 (1995) 
  6. Knop A, Pilato LA, "Phenolic Resins: Chemistry, Application, and Performance," Springer-Verlag, Berlin (1985)
  7. Strong AB, "Fundamentals of Composites Manufacturing: Materials, Methods, and Applications," Chap. 9, Society of Manufacturing Engineers, Dearborn (1989)
  8. Lehmann S, Maqgerdigian C, Papalia R, SAMPE Quart., Apr., 7 (1985)
  9. Hook KJ, Agrawal RK, Drzal LT, J. Adhes., 32, 157 (1990)
  10. Allred RE, Harrah LA, 25th International SAMPE Tech. Conf., October 26-28, 475 (1993)
  11. Yuan LY, Shyu SS, Lai JY, J. Appl. Polym. Sci., 42, 2525 (1991) 
  12. Blackman BRK, Kinlock AJ, Watts JF, Composties, 25, 332 (1994) 
  13. McKee DW, Spiro CL, Lamby EJ, Carbon, 22, 285 (1984) 
  14. Yin Y, Binner JG, Cross TE, Marshall SJ, J. Mater. Sci., 29(8), 2250 (1994) 
  15. Wang YQ, Zhou BL, Wang ZM, Carbon, 33, 427 (1995) 
  16. Day M, Suprunchuk T, J. Appl. Polym. Sci., 35, 529 (1988) 
  17. Banks M, Ebdon JR, Johnson M, Polymer, 34, 4547 (1993) 
  18. Cho D, Lee JY, Yoon BI, Polym.(Korea), 17(5), 521 (1993)
  19. Cho D, Yoon BI, J. Mater. Sci., submitted to be published
  20. Cho D, ha HS, Lim YS, Yoon BI, Kim KS, Carbon, in press
  21. Cho D, Carbon, Accepted to be Published
  22. Yamashita Y, Ouchi K, Carbon, 19, 89 (1981) 
  23. Trick KA, Saliba TE, Carbon, 33, 1509 (1995)