화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.112, No.6, 1718-1728, 2008
Molecular dynamics study of polarization effects on AgI
Three different models of AgI are studied by molecular dynamics simulations. The first one is the rigid ion model (RIM) with the effective pair potential of the Vashishta and Rahman form and the parametrization proposed by Shimojo and Kobayashi. The other two are polarizable ion models in which the induced polarization effects have been added to the RIM effective pair potential. In one of them (PIM1), only the anions are assumed to be polarizable by the local electric field. In the other one (PIM2s), the silver polarization is also included, and a short-range overlap-induced polarization opposes the electrically induced dipole moments. This short-range polarization is proved to be necessary to avoid overpolarization when both species are assumed to be polarizable. The three models reproduce the superionic character of alpha-AgI at 573 K and the liquid behavior of molten AgI at 923 K. The averaged spatial distribution of the cations in the alpha-phase obtained for PIM1 appears to be in better agreement with experimental data analysis. The PIM1 also reproduces the structure factor prepeak at about 1 angstrom(-1) observed from neutron diffraction data of molten AgI. The three models retain in the liquid phase the superionic character of alpha-AgI, as the mobility of the cations is significantly larger than that for the anions. The ionic conductivity for the polarizable ion models is in better agreement with experimental data for alpha-AgI and molten AgI.