Journal of Power Sources, Vol.174, No.2, 673-677, 2007
Thermal properties of Li4/3Ti5/3O4/LiMn2O4 cell
The thermal properties of Li4/3Ti5/3O4 and Li1+xMn2O4 electrodes were investigated by isothermal micro-calorimetry (IMC). The 150-mAh g(-1) capacity of a Li/Li4/3Ti5/3O4 half cell was obtained through the voltage plateau that occurs at 1.55 V during the phase transition from spinel to rock salt. Extra capacity below 1.0V was attributed to the generation of a new phase. The small and constant entropy change of Li4/3Ti5/3O4 during the spinel/rock-salt phase transition indicated its good thermal stability. Accelerated rate calorimetry confirmed that Li4/3Ti5/3O4 has better thermal characteristics than graphite. The IMC results for a Li/Li1+xMn2O4 half cell indicated less heat variation due to the suppression of the order/disorder change by lithium doping. The heat profiles of the Li4/3Ti5/3O4/Li1+xMn2O4 full cell indicated less heat generation compared with a mesocarbon-microbead graphite/Li1+xMn2O4 cell. Published by Elsevier B.V.