Journal of Power Sources, Vol.177, No.1, 142-147, 2008
High performance direct ethanol fuel cell with double-layered anode catalyst layer
Double-layered anode catalyst layers with two reverse configurations, which consist of 45 wt.% Pt3Sn/C and PtRu black catalyst layers, were fabricated to improve the performance of a direct ethanol fuel cell (DEFC). The in-house 45 wt.% Pt3Sn/C catalyst was characterized by XRD and TEM. The cross-sectional double-layered anode catalyst layer was observed by SEM. In DEFC performance test and anode linear sweep, voltammetry measurement, the anode with double-layered catalyst layer exhibited better catalytic activity for ethanol electro-oxidation than those with single-layered 45 wt.% Pt3Sn/C and PtRu black catalyst layers. In terms of anode product distribution, the DEFC with double-layered anode catalyst layer showed a higher yield of acetic acid than that with single-layered PtRu black catalyst layer and a higher yield Of CO2 than that with single-layered 45 wt.% Pt3Sn/C catalyst layer, respectively. These results suggest that the double-layered anode catalyst layer possessed the advantages of both Pt3Sn/C and PtRu black catalysts for ethanol electro-oxidation, and thus showed a higher ethanol electro-oxidation efficiency and DEFC performance in the practical polarization potential region. (c) 2007 Elsevier B.V. All rights reserved.
Keywords:direct ethanol fuel cell;double-layered anode catalyst layer;Pt3Sn/C catalyst;PtRu black catalyst