화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.130, No.5, 1759-1765, 2008
Noncovalent approach to one-dimensional ion conductors: Enhancement of ionic conductivities in nanostructured columnar liquid crystals
Noncovalent design of new liquid-crystal line (LC) columnar assemblies based on an ionic liquid has shown to be useful to achieve anisotropic high ionic conductivities. An equimolar mixture of an ionic liquid, 1-butyl-3-methylimidazolium bromide, and 3-[3,4,5-tri(octyloxy)benzoyloxy]propane-1,2-diol, which is partially miscible with the ionic liquid, exhibits an LC hexagonal columnar phase from -4 to 63 degrees C. This columnar supramolecular assembly forming the nanostructures shows the one-dimensional (1D) ionic conductivity of 3.9 x 10(-3) S cm(-1) at 50 degrees C along the column, which is more than 700 times higher than that of the corresponding covalent-type columnar ionic liquid, 1-methyl-3-[3,4,5-tri(octyloxy)benzyl]-imidazolium bromide, which is 5.3 x 10(-6) S cm(-1) at 50 degrees C. This significant enhancement of the ionic conductivity is attributed to the increase of the mobility of the ionic part.