Journal of the American Chemical Society, Vol.130, No.11, 3624-3632, 2008
Synthesis and photoluminescent properties of size-controlled germanium nanocrystals from phenyl trichlorogermane-derived polymers
We report the preparation of luminescent oxide-embedded germanium nanocrystals (Ge-NC/GeO2) by the reductive thermal processing of polymers derived from phenyl trichlorogermane (PTG, C6H5-GeCl3). Sol-gel processing of PTG yields air-stable polymers with a Ge:O ratio of 1:1.5, (C6H5GeO1.5)(n), that thermally decompose to yield a germanium rich oxide (GRO) network. Thermal disproportionation of the GRO results in nucleation and initial growth of oxide-embedded Ge-NC, and subsequent reaction of the GeO2 matrix with the reducing atmosphere results in additional nanocrystal growth. This synthetic method affords quantitative yields of composite powders in large quantities and allows for Ge-NC size control through variations of the peak thermal processing temperature and reaction time. Freestanding germanium nanocrystals (FS-Ge-NC) are readily liberated from Ge-NC/GeO2 composite powders by straightfoward dissolution of the oxide matrix in warm water. Composites and FS-Ge-NC were characterized using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX), and photoluminescence (PL) spectroscopy.