화학공학소재연구정보센터
Polymer(Korea), Vol.20, No.6, 1107-1113, November, 1996
에폭시-카본 블랙 복합재료에 대한 복소유전율의 주파수 분산 모델
Frequency Dispersion Model of the Complex Permittivity of the Epoxy-Carbon Black Composites
초록
까본 블랙-에폭시 복합재료의 복소유전율에 대한 주파수 분산 거동 모델을 이완형과 공진형으로 각각 나누어 살펴보았다. 이완형 거동을 나타내는 카본 블랙 2vol%의 복합재료의 복소유전율을 이미 보고된 바 있는 3가지 모델과 비교한 결과 Havriliak-Negami의 모델과 일치한다는 것을 알았다. 이때의 damping factor 및 asymmetrical factor는 복합재료의 기공이 증가할수록 증가하였다. 3vol% 이상의 카본 블랙 함량에서 공진형을 나타내는 에폭시 복합재료의 복소유전율은 본 논문에서 제안한 실험식과 잘 일치되는 결과를 나타내었다. Damping factor(γ)와 asymmetrical factor(κ)는 충전재와 매트릭스 사이의 계면에 관계가 있음을 알았다. 카본 블랙 함량이 증가하면 γ는 감소하며 κ는 증가한다.
The frequency dispersion behavior model for the complex permittivity of the epoxy-carbon black composites was investigated in terms of the relaxation type and resonance type, respectively. Comparing the complex permittivity values of the composites, filled with 2 vol% carbon black, that are obtained from three types of previously reported model equations, the relaxation behavior was found to be coincided with that obtained from the Havriliak-Negami model. The damping and asymmetrical factor values were increased with increasing porosity in the composite. The emperical equation proposed here is found to be very satisfactory in explaining the complex permittivity of the composites of more than 3 vol% carbon black with resonance type. It is also found that the damping factor (γ) and the asymmetrical factor (κ) in this equation were dependent on the interface between the matrix and filler. It is found that the γ decreased as the filler content increased, but κ increased reversely.
  1. Naito Y, Yin J, Mizumoto T, Inst. Elec. Commun. Eng. Jpn., J70-C(8), 1141 (1987)
  2. Kshino K, Electrronic Ceram., 19, 22 (1988)
  3. Cole KS, Cole RH, J. Chem. Phys., 9, 341 (1941) 
  4. Davidson DW, Cole RH, J. Chem. Phys., 18, 1417 (1951)
  5. Havriliak S, Negami S, Polymer, 8, 161 (1967) 
  6. Born M, Wolf E, "Principles of Optics," Pergamon Press, Oxford (1959)
  7. Miles A, Wertphal WB, Hippel AV, Rev. Modern Phys., 29(3), 279 (1957) 
  8. Nicolson AM, IEEE Trans. Instrum. Meas., IM19, 377 (1970)
  9. Debye P, "Polar Molecules," Chem. Catalog Co., Chap. 5 (1929)
  10. Landau L, Lifshitz E, Phys. Z. Soviet Un., 5, 153 (1953)