Journal of Vacuum Science & Technology B, Vol.26, No.2, 551-558, 2008
Effects of Mo seeding on the formation of Si nanodots during low-energy ion bombardment
Effects of seed atoms on the formation of nanodots on silicon surfaces during normal incidence Ar+ ion bombardment at room temperature are studied with real-time grazing-incidence small-angle x-ray scattering (GISAXS), real-time wafer curvature stress measurements and ex situ atomic force microscopy. Although Si surfaces remain smooth during bombardment at room temperature, when a small amount of Mo atoms is supplied to the surface during ion bombardment, the development of correlated structures ("dots") is observed. Stress measurements show that initially a compressive stress develops during bombardment, likely due to amorphization of the surface and insertion of argon. However, seeding causes a larger tensile stress to develop with further bombardment, possibly due to the formation of higher density regions around the Mo seed atoms on the surface. Detailed fits of the GISAXS evolution during nanostructure growth show that the instability is larger than predicted by the Bradley-Harper theory of curvature-dependent sputter yield. These results suggest that the tensile stress is playing a dominant role in driving the nanodot formation. (C) 2008 American Vacuum Society.