Langmuir, Vol.23, No.26, 13066-13075, 2007
Structure and orientation changes of omega- and gamma-gliadins at the air-water interface: A PM-IRRAS Spectroscopy and Brewster angle microscopy study
Microscopic and molecular structures of omega- and gamma-gliadin monolayers at the air-water interface were studied under compression by three complementary techniques: compression isotherms, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). For high molecular areas, gliadin films are homogeneous, and a flat orientation of secondary structures relative to the interface is observed. With increasing compression, the nature and orientation of secondary structures changed to minimize the interfacial area. The gamma-gliadin film is the most stable at the air-water interface; its interfacial volume is constant with increasing compression, contrary to omega-gliadin films whose molecules are forced out of the interface. gamma-Gliadin stability at a high level of compression is interpreted by a stacking model.