화학공학소재연구정보센터
Langmuir, Vol.24, No.3, 1064-1069, 2008
Porous conducting polymer/heteropolyoxometalate hybrid material for electrochemical supercapacitor applications
A porous conducting polymer/heteropolyoxometalate hybrid material that displays high specific capacitance and low ionic resistance has been prepared for electrochemical supercapacitor applications. Polypyrrole/phosphomolybdate composite films were chemically synthesized in tetrahydrofuran in the presence of sodium sulfate, which acts as a porogen. While the phosphomolydic acid could be removed from the film upon rinsing with pure tetrahydrofuran or acetone, rinsing with water or methanol resulted in retention of the heteropolyoxometalate at a level high enough to easily observe its electrochemistry. The retained phosphomolybdate exhibits fast and reversible redox behavior, adding a significant amount of pseudocapacitance to the polymer. Porous films were obtained by leaching out the sodium sulfate porogen from the films using water. The morphology obtained using this method is altered by varying the monomer-to-porogen ratio. Increasing the porosity increases the rate at which the hybrid material can be charged/discharged (i.e., oxidized/reduced) by increasing the ionic conductivity and in turn lowering the resistor-capacitor time constant of the material. The ability to tune the porosity of the material allows the optimization of performance characteristics for use in supercapacitor applications. Impedance measurements indicate that the ionic conductivity of these porous structures can be increased more than an order of magnitude over that observed for standard conducting polymer films and that the hybrid material displays peak specific capacitance of around 700 F/g as well as excellent reversibility and cyclability.