화학공학소재연구정보센터
Langmuir, Vol.24, No.7, 2992-3000, 2008
New dicholesteryl-based gelators: Chirality and spacer length effect
Eight new diacid amides of dicholesteryl L(D)-alaninates were designed and prepared. The compounds with spacers containing three, four, five, or six carbon atoms and L-alanine residues are denoted as la, 2a, 3a, and 4a, respectively, and those containing D-alanine residues are denoted as 1b, 2b, 3b, and 4b, respectively. A gelation test revealed that a subtle chan-e in the length of the spacer and an inverse in the chirality of the amino acid residue can produce a dramatic change in the gelation behavior of the compounds and the microstructures of the gels, as revealed by SEM, XRD, and CD measurements. Importantly, for the compounds 1 and 2, those containing D-alanine residues (1b, 2b) are more efficient gelators than their analogues with opposite chirality (1a, 2a). For the compounds of longer spacers (3, 4), however, those containing L-alanine residues (3a, 4a) are superior to the corresponding ones with D-alanine residues (3b, 4b). Very interestingly, of the 139 gel systems studied, at least I I of them gel spontaneously at room temperature. Studies of the theological properties of the example systems of these gels demonstrated that change in the spacer lengths of the gelators has a great effect upon the mechanical properties of the corresponding gels, and the studies also revealed the thixotropic properties of the gels. Furthermore, it was observed that 4a forms water-in-oil gel emulsions with some organic solvents by simple agitating the systems at room temperature.