Langmuir, Vol.24, No.7, 3235-3243, 2008
Self-assembled carbon nanotubes on gold: Polarization-modulated infrared reflection-absorption spectroscopy, high-resolution X-ray photoemission spectroscopy, and near-edge X-ray absorption-fine structure spectroscopy study
Recently we reported noncovalent functionalization of nanotubes in an aqueous medium with ionic liquid-based surfactants, 1-dodecyl-3-methylimidazolium bromide (1) and 1-(12-mereaptododecyl)-3-methylimidazolium bromide (2), resulting in positively charged single-wall carbon nanotube (SWNT)-1,2 composites. Thiolation of SWNTs with 2 provides their self-assembly on gold as well as templating gold nanoparticles on SWNT sidewalls via a covalent -S-Au bond. In this investigation, we studied the electronic structure, intermolecular interactions, and packing within noncovalently thiolated SWNTs and also nanotube alignment in the bulk of SWNT-2 dried droplets and self-assembled submonolayers (SAMs) on gold by high-resolution X-ray photoemission spectroscopy (HRXPS), C K-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). HRXPS data confirmed the noncovalent nature of interactions within the nanocomposite of thiolated nanotubes. In PM-IRRAS spectra of SWNT SAMs on gold, the IR-active vibrational SWNT modes have been observed and identified. According to PM-IRRAS data, the hydrocarbon chains of 2 are oriented with less tilt angle to the bare gold normal in a SAM deposited from an SWNT-2 dispersion than those of I deposited from an SWNT-1 dispersion on the mercaptoethanesulfonic acid-primed gold. For both the dried SWNT-2 bulk and the SWNT-2 SAM on gold, the C K-edge NEXAFS spectra revealed the presence of CH-pi interactions between hydrocarbon chains of 2 and the 7 electronic nanotube structure due to the highly resolved vibronic fine structure of carbon 1s -> R*/sigma*(C-H) series of states in the alkyl chain of 2. For the SWNT-2 bulk, the observed splitting and upshift of the SWNT pi* orbitals in the NEXAFS spectrum indicated the presence of pi-pi interactions. In the NEXAFS spectrum of the SWNT-2 SAM on gold, the upshifted values of the photon energy for R*/sigma*(C-H) transitions indicated close contact of 2 with nanotubes and with a gold surface. The angle-dependent NEXAFS for the SWNT-2 bulk showed that most of the molecules of 2 are aligned along the nanotubes, which are self-organized with orientation parallel to the substrate plane, whereas the NEXAFS for the SWNT-2 SAM revealed a more normal orientation of functionality 2 on gold compared with that in the SWNT-2 bulk.