화학공학소재연구정보센터
Langmuir, Vol.24, No.7, 3392-3399, 2008
Calcium and magnesium cations enhance the adhesion of motile and nonmotile Pseadomonas aeruginosa on alginate films
We investigated the impact of calcium and magnesium ions on the deposition kinetics of flagellated and nonflagellated Pseudomonas aeruginosa onto an alginate conditioning film in a radial stagnation point flow system. The bacterial deposition/adhesion behavior was related to structural changes of the alginate film in the presence of the divalent cations. Our results showed that adhesion of nonmotile bacteria was governed by cation bridging interactions between high-affinity sites at the bacterial surface and either clean or alginate-conditioned substrate surfaces. For motile bacteria, the adhesion onto clean quartz was governed by electrostatic interactions while adhesion onto alginate-conditioned quartz was dependent on the structure and viscoelastic properties of the alginate film in the presence of calcium or magnesium. We demonstrate that bacterial adhesion behavior is governed both by the effects of divalent cations on the surface properties of the bacteria and the substrate and by the type of specific interactions occurring between these two surfaces.