Langmuir, Vol.24, No.8, 3787-3793, 2008
Structural organization of gold nanoparticles onto the ITO surface and its optical properties as a function of ensemble size
Self-assembly of citrate-stabilized gold nanoparticles (AuNPs) onto an optically transparent indium tin oxide (ITO) surface followed by neutralization of these particles using dodecanethiol as a surfactant have been demonstrated. X-ray photoelectron spectroscopic (XPS) studies revealed the partial removal of citrate ions from the immobilized AuNPs, which advances the dilution of electrostatic attraction between AuNPs and the APS (amino-terminated monolayer)functionalized ITO surface. The resultant AuNPs restore their mobility to some extent and form small ensembles. Some of the immobilized AuNPs were completely removed from the surface due to neutralization, as confirmed by XPS studies. Interparticle distance and size of ensembles were manipulated by consecutive cycles of immobilization and neutralization of AuNPs. Controlled nanostructural fabrication progression, which leads to two-dimensional lateral growth of AuNPs, provides a method for systematically shifting the surface plasmon resonance band based on the increase in plasmon coupling among the closely placed AuNPs of an ensemble. The magnitude of shift increases with the size of ensemble. This manipulated chemical strategy offers a convenient and simple method to tune the optical properties of materials on a nanoscale.