Polymer, Vol.49, No.3, 715-723, 2008
Hydrophilic-hydrophobic multiblock copolymers based on poly(arylene ether sulfone) via low-temperature coupling reactions for proton exchange membrane fuel cells
Two series of multiblock copolymers based on poly(arylene ether sulfone)s were developed and evaluated for use as proton exchange membranes (PEMs). The multiblock copolymers were synthesized by a coupling reaction between phenoxide terminated fully disulfonated poly(arylene ether sulfone) (BPSH100) and decafluorobiphenyl (DFBP) or hexafluorobenzene (HFB) end-capped unsulfonated poly(arylene ether sulfone) (BPS0) as hydrophilic and hydrophobic blocks, respectively. The highly reactive nature of DFBP and HFB allowed the coupling reactions to be accomplished under mild reaction conditions (e.g., < 105 degrees C). The low coupling temperatures prevented possible ether-ether exchange reactions which can cause a loss of order due to randomization of the hydrophilic-hydrophobic sequences. The multiblock copolymers produced tough and ductile membranes and their fundamental properties as PEMs were explored. They showed enhanced conductivities under fully hydrated conditions when compared with a random BPSH copolymer with a similar IEC. These copolymers also showed anisotropic swelling behavior, whereas the random copolymers were isotropic. The synthesis and fundamental properties of the multiblock copolymers are reported here and the systematic fuel cell properties and more detailed morphology characterization will be provided elsewhere. (c) 2007 Elsevier Ltd. All rights reserved.
Keywords:hydrophilic - hydrophobic multiblock copolymers;sulfonated poly(arylene ether sulfone);fluoroaromatic endlinking