화학공학소재연구정보센터
Polymer(Korea), Vol.21, No.3, 448-455, May, 1997
폴리우레탄/폴리스티렌 IPN의 상용성 조절에 관한 연구(II): 이온기간 상호작용이 상거동에 미치는 영향
Miscibility Control of Polyurethane/Polystyrene IPN's (II): Effect of Ionic Interaction on Phase Behavior
초록
음이온기를 생성하는 2,2-bis(hydroxymethyl) propionic acid (DMPA)와 trilethyl amine (TEA)이 소량 도입된 폴리우레탄(PU)과 양이온기를 생성하는 클로로메틸스티렌 (CMS)과 TEA가 소량 첨가된 폴리스티렌 (PS)을 조성고분자로 하는 IPN을 동시중합법으로 제조하였다. DMPA, TEA, 그리고 CMS의 함량과 PU/PS 조성비를 변수로 하여 제조된 IPN의 최종 몰폴로지 및 동적·기계적 성질을 SEM과 DMA로 조사, 비교하였다. SEM 관찰 결과, PU의 함량 및 이온기를 생성하는 조성물의 함량이 증가할수록 보다 미세한 분산상을 보였으며, DMA 측정에 의한 tan δ 역시 이를 반영하는 거동을 보였다. 실험범위 내에서, 이온기를 생성하는 조성물이 첨가된 IPN은 육안으로 볼 때 대부분 투명하였으며, 밀도 또한 각 조성의 체적 비례법으로 계산한 밀도값보다 높아, IPN 효과와 더불어 이온기간의 상호작용으로 인해 조성고분자간 혼화성이 향상 되었음을 알 수 있었다.
Interpenetrating polymer networks (IPN's) of polyurethane (PU) and polystyrene (PS), which contain mutually opposite ionic groups, i.e., carboxyl and quaternary ammonium groups, respectively, were synthesized through simultaneous polymerization. The final morphology and dynamic mechanical property of these IPN's were investigated through scanning electron microscopy (SEM) and dynamic mechanical analysis. As the content of ionic groups and the amount of PU in IPN's were increased, the size of dispersed PS phase was decreased and the domain showed better dispersion in the SEM observations. Glass transition temperature (Tg) showed an inward shift for both components and two distinct peak was gradually merged into a single broad peak. The IPN's comprising ionic groups showed higher densities than those calculated by the volume additivity of the components, and they were optically transparent due to the combined effect of the physical interlocking of IPN's and the intermolecular ionic interaction.
  1. Sperling LH, "Interpenetrating Polymer Networks and Related Materials," Plenum Press, New York (1981)
  2. Olabisi O, Robeson LM, Shaw MT, "Polymer-Polymer Miscibility," Academic Press, New York (1979)
  3. Klempner D, Sperling LH, Utracki LA, "Interpenetrating Polymer Networks," Adv. Chem. Ser. No. 239, Am. Chem. Soc. U.S.A. (1994)
  4. He X, Widmaier JM, Meyer GC, Polym. Int., 32, 295 (1993)
  5. Ting SP, Bulkins BJ, Pearce EM, Kwei TK, J. Polym. Sci. A: Polym. Chem., 19, 1451 (1981)
  6. Ohno N, Kumanotami J, Polym. J., 11, 947 (1979) 
  7. Zhou ZL, Eisenberg A, J. Polym. Sci. B: Polym. Phys., 21, 595 (1983)
  8. Cassidy EF, Xiao HX, Frisch KC, Frisch HL, J. Polym. Sci. A: Polym. Chem., 22, 2667 (1984)
  9. Eisenberg A, Evans K, Yoon HN, Adv. Chem. Ser., 187, 267 (1980)
  10. Lee DS, Kim SC, Macromolecules, 17(268), 2193 (1984) 
  11. Lee DS, Kim SC, Macromolecules, 17(268), 2222 (1984) 
  12. Lee DS, Kim SC, Macromolecules, 18, 2173 (1985) 
  13. Kim BS, Lee DS, Kim SC, Macromolecules, 19, 2589 (1986) 
  14. Kim SK, Kim SC, Polym. Bull., 23, 141 (1990) 
  15. Roha M, Wang B, J. Appl. Polym. Sci., 45, 1367 (1992) 
  16. Hourston DJ, Huson MG, J. Appl. Polym. Sci., 45, 1753 (1992) 
  17. Nevissas V, Widmaier JM, Meyer GC, J. Appl. Polym. Sci., 36, 1467 (1988) 
  18. Cesteros LC, Meaurio E, Katime I, Macromolecules, 26, 2323 (1993) 
  19. Lin MS, Chang RJ, J. Appl. Polym. Sci., 46, 815 (1992) 
  20. Song KC, Kim SK, Kim JM, Polym.(Korea), 20(1), 96 (1996)
  21. Eisenberg A, Smith P, Zhou ZI, Polym. Eng. Sci., 22, 1117 (1982) 
  22. Smith P, Eisenberg A, J. Polym. Sci. C: Polym. Lett., 21, 223 (1983)
  23. Klempner D, Frisch KC, Xiao HX, Frisch HL, Polym. Eng. Sci., 25, 488 (1985) 
  24. Kim BK, Kim TK, J. Appl. Polym. Sci., 43, 393 (1991) 
  25. Hare CH, "Protective Coatings; Fundamentals of Chemistry and Composition," p. 265, Technology Publishing Co. (1994)
  26. Camps M, Chatzopoulos M, Montheard JP, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C22(3), 343 (1982)
  27. Kim JM, Kim SK, Lim GT, Ryu BR, Song KC, Polym.(Korea), 13(6), 493 (1989)
  28. Pandit SB, Kulkarni SS, Nadkarni VM, Macromolecules, 27(16), 4595 (1994)