화학공학소재연구정보센터
Polymer(Korea), Vol.21, No.4, 597-604, July, 1997
카본블랙이 충전된 가황고무의 온도에 따른 보강효과
Effect og Tenperature on the Reinforcement of Carbon Black Filled Rubber Vulcanizates
초록
고무 가황체의 정적탄성율(Esg)과 카본블랙이 충전된 고무 가황체의 정적탄성율(Esf)의 비(Esf/Esg)는 카본블랙의 보강효과를 나타낸다. 일반적으로 고무 컴파운드에서 차본블랙의 보강효과는 카본블랙 자체의 부피분율(φ)과 결합고무의 부피분율 합인 카본블랙의 유효부피분율(V)로 해석할 수 있다. Guth-Gold 식은 고무 컴파운드에서 카본블랙의 보강효과를 V로 나타내는 유용한 식으로 잘 알려져 있다. 실험적으로 측정한 Esf/Esg와 Guth-Gold 식 및 V를 카본블랙 특성인자로 나타내는 Wang이 제안한 식 또는 Medalia가 제안한 식을 이용하여 예측한 결과를 비교하여 보았다. 실험적으로 측정한 Esf/Esg는 온도의존성을 보이나 예측한 값들은 그렇지 앉았다. 한편, V/φ는 φ의 증가에 따라 감소하였다. 따라서 Y/φf를 나타내는 모델로 V/φ=as/φ+bs·CDBP를 제안하였는 바, CDBP는 압축 디부틸프탈레이트 흡수가이고, 모델의 as와 bs는 각각 온도의존성을 보이는 상수이다. 카본블랙 함량에 따른 Esf/Esg의 변화를 제안된 모델식과 Guth-Gold 식을 이용함으로써 -40∼80℃의 넓은 온도범위에 걸쳐 합리적으로 예측할 수 있었다.
Ratio of static modulus for rubber vulcanizate (msg) and static modulus for carbon black filled rubber vulcanizate (Esf), Esf /Esg, indicates reinforcing effect of carbon black. In general, reinforcing effect of carbon black in rubber vulcanizates can be interpreted in terms of effective volume fraction (V) of carbon black which is sum of carbon black volume fraction(φ) and bound rubber volume fraction. The Guth-Gold equation, Esf /Esg=1+2.5V+14.1V2, is well known as a useful expression for reinforcing effect of carbon black in rubber vulcanizates. Experimentally determined values and predicted values of Esf5/Esg employing Guth-Gold equation and V based on Wang's equation or Medalia's equation for carbon black filled natural rubber vulcanizates were compared. It was observed that experimental values of esf/Esg showed temperature dependency while predicted values did not. It was found that the V/φ decreased with increasing φ of natural rubber vulcanizates. Thus, we have proposed a model for V/φ, V/φ=as/φ+bs·CDBP, where CDBP is compressed dibutyl phthalate absorption value, and both as and bs are temperature dependent constants. It was confirmed that change of Esf /Esg depending on carbon black content could be predicted reasonably using Guth-Gold equation and the equation proposed for V in this paper in a wide range of temperatures, i.e., -40∼80 ℃.
  1. Horn B, "Rubber Technology and Manufacture," 2nd ed., eds. by C.M. Blow and C. Hepburn, chap. 6, The Plastics and Rubber Institute (1982)
  2. Twiss DF, J. Soc. Chem. Ind., 44, 1067 (1925)
  3. Boiry F, Rev. Gen. Caoutchouc, 8, 108 (1931)
  4. Baker WO, Private Communication to the Office of Rubber Reserve (1945)
  5. Dannenberg EM, Rubber Chem. Technol., 59, 512 (1986)
  6. Harmed GR, Hatfield S, Rubber Chem. Technol., 62, 143 (1989)
  7. Wolff S, Wang MJ, Tan EH, Rubber Chem. Technol., 66, 163 (1993)
  8. Roychoudhury A, De SK, De PP, Ayala JA, Joyce GA, Rubber Chem. Technol., 67, 662 (1994)
  9. Medalia AI, Rubber Chem. Technol., 51, 437 (1978)
  10. Wolff S, Wang MJ, "Carbon Black-Science and Technology," 2nd ed., Eds., by J.B. Donnet, R.C. Bansal, and M.J. Wang, chap. 9, Marcel Dekker, Inc., New York (1993)
  11. Kraus G, Rubber Chem. Technol., 44, 199 (1972)
  12. Wang MJ, Wolff S, Tan EH, Presented at a Meeting of the Rubber Division, ACS, Detroit, Oct. 8-11 (1991)
  13. Kim WY, Kim HS, Shin HC, Hong SP, Lee BC, J. Korean Ind. Eng. Chem., 5(6), 943 (1994)
  14. Lee BC, Kim WY, Lee DS, Polym.(Korea), 20(6), 971 (1996)
  15. ASTM D 2414, Vol. 9.01. p. 434 (1990)
  16. ASTM D 3493, Vol. 9.01. p. 566 (1990)
  17. ASTM D 3765, Vol. 9.01. p. 614 (1990)
  18. Okado Y, J. Soc. Rubber Ind., 58(7), 449 (1985)