화학공학소재연구정보센터
Chinese Journal of Chemical Engineering, Vol.16, No.2, 203-208, 2008
Adsorption kinetics of dibenzofuran in activated carbon packed bed
The adsorption of dibenzofuran (DBF) on three commercial granular activated carbons (GAC) was investigated to correlate the adsorption equilibrium and kinetics with the morphological characteristics of activated carbons. Breakthrough experiment was conducted to determine the isotherm and kinetics of dibenzofuran on the activated carbons. All the experiment runs were performed in a fixed bed with a process temperature of 368 K. The effects of adsorbent morphological properties on the kinetics of the adsorption process were studied. The equilibrium data are found satisfactory fitted to the Langmuir isotherm. An intraparticle diffusion model based on the obtained Langmuir isotherm was developed for predicting the fixed bed adsorption of dibenzofuran. The result indicated that this model fit all the breakthrough curves well. The surface diffusion coefficients of dibenzofuran on the activated carbon are calculated, and a relationship with the microporosity is found. As it was expected, the dibenzofuran molecule finds more kinetic restrictions for the diffusion in those carbons with narrower pore diameter.