화학공학소재연구정보센터
Combustion and Flame, Vol.152, No.3, 301-316, 2008
Soot surface growth and oxidation at pressures up to 8.0 atm in laminar nonpremixed and partially premixed flames
The flame structure and soot particle surface reaction properties, including growth and oxidation, of laminar jet nonpremixed flames were studied experimentally at pressures of 1.0-8.0 atm. Ethylene-helium mixtures were used in an oxygen/helium coflow at normal temperature (300 K) in order to minimize the effects of buoyancy. The following properties along the axis of flames were measured as a function of distance from the burner exit: soot concentrations by laser extinction, soot temperatures by multiline emission, soot structure by thermophoretic sampling and analysis using transmission electron microscopy (TEM), concentrations of major stable gas species by isokinetic sampling and gas chromatography, concentrations of radical species (H, OH, 0) by Li/LiOH atomic absorption, and flow velocities by laser velocimetry. The measurements were analyzed to determine local flame properties in order to find soot surface growth and oxidation rates. The measurements of soot surface growth rates (corrected for soot surface oxidation) were found to be consistent with earlier measurements at atmospheric and subatmospheric pressures involving laminar premixed and diffusion flames fueled with a variety of hydrocarbons. The growth rates from all the available flames were in good agreement with each other and with existing hydrogen-abstraction/carbon-addition (HACA) soot surface growth mechanisms available in the literature. Measurements of early soot surface oxidation rates at pressures of 1.0-8.0 atm (corrected for soot surface growth and prior to consumption of 70% of the maximum mass of the primary soot particles) were found to be consistent with earlier measurements at atmospheric and subatmospheric pressures. The oxidation rates of up to 8 atm in flame environment could be explained by reaction with OH, having a collision efficiency of 0.12. (C) 2007 The Combustion Institute. Published by Elsevier Inc. All rights reserved.