화학공학소재연구정보센터
Polymer(Korea), Vol.21, No.4, 657-666, July, 1997
마스터뱃치 제조조건이 PET/카본블랙계의 분산 및 물성에 미치는 영향
Effect of Preparing Condition in Masterbatch on Dispersity and Physical Properties of PET/Carbon Black System
초록
Brabender Plasticorder에서 카본블랙과 저융점의 copolyester 분산제를 1:1.3의 무게비로 혼련하여 마스터뱃치를 제조였으며 카본블랙의 분산도에 미치는 분산조건의 영향을 고찰하였다. 또한 일축압출기에서 poly(ethylene terephthalate)에 제조한 마스터뱃치의 함량에 변화를 주며 흑색 컴파운드를 만들고 이들의 기계적 물성을 조사하였다. 본 실험에서 사용한 분산제는 마스터뱃치 제조조건에서 열분해가 일어나지 않았고, 카본블랙 마스터뱃치 제조시 전단율이 높을수록 Incorporation time은 짧아졌지만 Incorporation time에서의 torque는 전단율에 영향을 받지 않고 일정하였다. 마스터뱃치에서 카본블랙의 분산도는 전단율과 분산시간에 비례하였고, 분산도는 컴파운드에서 그대로 유지되었고 마스터뱃치의 체적전기저항이 증가할수록 컴파운드의 물성도 증가하는 경향을 나타내었다. 카본블랙 분산시 dimensionless time과 체적전기저항과의 관계를 구할 수 있었고 이것은 카본블랙의 분간에 필요한 최적의 분산시간을 미리 예측할 수 있음을 의미한다.
Carbon black masterbatches were Prepared by mixing carbon black into the copolyester dispersing agent(1:1.3wt. ratio) in a Brabender Plasticorder(PLE331) and the effects of preparing condition on dispersity of carbon black were studied. By using a single screw extruder. masterbatches were compounded with poly(ethylene-trephthalate) in various concentration and mechanical properties of the compounds were investigated. Thermal degradation of polymeric dispersing agent was not so significant through dispersion. In prewaring carbon black masterbatch, incorporation time was shortened as shear rate increased but maximum torque at incorporation time was not affected by shear rate. Dispersion quality of masterbatch was enhanced with increasing rotor rpm and mixing time. The ultimate performance and mechanical characteristics of carbon black filled PET compounds depended directly on dispersion quality of the carbon black in masterbatch. From the relationship between volume resistivity and dimensionless time, one may be able to estimate in advance an optimum mixing time for the proper application.
  1. Brydson JA, "Plastics Materials," 5th Ed., p. 143, Butterworths Scientific, London (1989)
  2. Skeist I, "Handbook of Adhesives," 3rd Ed., van Nostrand Reinhold, New York (1990)
  3. zollinger H, "Color Chemistry," 2nd Ed., p. 1, VCH (1991)
  4. "Carbon Black Dispersion," Technical Report S-131, p. 4, Cabot Corporation (1989)
  5. Edenbaum J, "Plastics Additives and Modifiers Handbook," p. 615 (1967)
  6. "Special Blacks for Plastics," Technical Report S-134, p. 1, Cabot Corporation (1990)
  7. Rwei SP, Manas-Zloczower I, Polym. Eng. Sci., 30, 701 (1990) 
  8. "Carbon Blacks for Protection of Plastics Exposed to Ultraviolet Light," Technical Report S-114, p. 1, Cabot Corporation (1987)
  9. "Conductive Carbon Black in Plastics," Technical Report S-39, p. 1, Cabot Corporation
  10. Herbst W, Hunger K, "Industrial Organic Pigments," VCH (1993)
  11. Park LS, Lee DC, Kim JK, Huh WS, J. Korean Ind. Eng. Chem., 7(3), 496 (1996)
  12. Medalia AI, Rubber Chem. Technol., 59, 432 (1986)
  13. Cotten GR, Rubber Chem. Technol., 57, 118 (1984)
  14. Hess WM, Rubber Chem. Technol., 64, 386 (1991)
  15. Stump NA, Railsback HE, Rubber World, 152, 41 (1946)
  16. Topcik B, Rubber Age, 105, 25 (1973)
  17. Topcik B, Rubber Age, 105, 35 (1973)
  18. ASTM D3349-86, "Standard Test Method for Absorption Coefficient of Carbon Black Pigmented Ethylene Plastics," (1986)
  19. Medalia AI, Rubber Age, 97, 82 (1965)
  20. ASTM D2663-89, "Standard Test Methods for Carbon Black-Dispersion in Rubber," (1989)
  21. Ford WF, Callan JE, Hess WM, Rubber Age, 92, 738 (1963)
  22. Hess WM, Vegvari PC, Swor RA, Rubber Chem. Technol., 58, 350 (1985)
  23. Gessler AM, Rubber Age, 94, 750 (1964)
  24. Rwei SP, Manas-Zloczower I, Polym. Eng. Sci., 31, 558 (1991) 
  25. ASTM E308-90, "Standard Test Method for Computing the Color of Objects by Using the CIE System," (1990)