Applied Surface Science, Vol.254, No.13, 3964-3970, 2008
Study of nanoclusters growth at initial stages of ultrathin film deposition by kinetic modeling
Comparative analysis of Au, Cu, Pt, Ni and Fe nanoclusters growth on amorphous carbon substrate by proposed kinetic model based on rate equations is present. Partial sticking coefficients introduced into the model let to discriminate elementary processes such as adatom adsorption and diffusion on bare substrate and on top of islands, nucleation and mobility of islands and its coalescence, 2-d and 3-d island growth modes. The quantitative fittings of experimental time dependencies of surface coverage, clusters density, cluster size are performed by solving model equations. From the best fittings the values of phenomenological coefficients defining elementary processes are found for different materials. Comparative analysis of those coefficients let to discover mechanisms of nanoclusters formation and growth of different materials. It is shown that clusterization for Cu and Au is more favorable than for Pt and Ni. Diffusivity for Pt and Ni on amorphous carbon (a-C) substrate is significantly less than for Au and Cu. In opposite, diffusivity on the top of islands for Ni and Pt is significantly higher than for Au and Cu. The mobility of islands for Au and Cu is much higher than for Ni and Pt. The fitting of experimental curves of Fe deposition on a-C at different temperatures showed that temperature mainly influences sticking process but not diffusion. (C) 2007 Elsevier B.V. All rights reserved.
Keywords:thin island films;nanoclusters;adsorption;surface diffusion;coalescence;kinetic modeling;rate equations