화학공학소재연구정보센터
Polymer(Korea), Vol.21, No.5, 836-850, September, 1997
용융압출에 다른 Poly ( ethylene 2,6- naphthalate -co - terephthalate )/Polypropylene, PENT/PP 블렌드의 모폴로지 특성변화
Morphological Characteristics of Poly(ethylene 2.6-naphthalate-co-terephthalate)/Polypropylene, PENT/PP Blends by Melt Extruding
초록
PENT/PP (90/10wt%) 블렌드 시트를 용융압출 조건변화에 따라 압출성형 하였고, 그리고 이 시트를 일축연신 및 이축연신에 의하여 블렌드 필름을 제조하였다. SEM 단면 관찰결과, 블렌드 시트내 PP 형상은 타원형으로 PENT 연속상과 계면분리 되어 있었고, 그 크기는 3∼8㎛로 용융압출 조건에 따라, 즉 스크루속도가 증가할수록 그리고 압출온도가 감소할수록 작아지는 경향을 나타내었나. 또한, 블렌드 필름내에는 PENT 연속상과 PP분산상과의 계면에서 미세기공이 형성되었고, 일축연신과 이축연신에 의한 기공의 함량은 각각 3∼13%과 5∼30%로 시트내 PP 분자상의 크기가 작을수록 증가하였다. 이러한 미세기공의 정성으로 필름의 밀도는 감소하였고, 그리고 최적조건에서 PP 단독성분 필름의 밀도보다 낮은 PENT/PP 블렌드 필름을 얻을 수 있었다. 블렌드 칩으로부터 용매분리한 PP의 SEM 표면 관찰결과는 두께가 약 3 ㎛의 실같은 형상을 하고 있었고, 블렌드 시트와 블렌드 필름의 경우 PP의 형상은 크기가 비슷한 타원형을 나타내었다.
PENT/PP (90/10 wt%) blend sheets were prepared at various extruding conditions and the blend films were prepared from the blend sheets by uniaxial and biaxial stretching methods. The fracture surfaces observed by SEM showed that PP phase in blend sheets was in spheroidal shape, isolated at the interface with PENT phase and its size was ranged from 3 to 8 ㎛ depending on the extruding conditions the size of PP phase decreased with increasing the screw speed and decreasing the extruding temperature. The microvoids were formed at the interface between PENT and PP phase in the blend films, and their content were ranged from 3 to 13% for the uniaxial films and ranged from 9 to 30% for the biaxial films depending on the the size of PP phase In the blend sheets, respectively The density of the blend films decreased due to the formation of microvoids, and PENT/PP blend film which had lower density than that of PP film was obtained by the optimal conditions. The surfaces of extracted PP phase observed by SEM revealed that the shape of the PP phase for the blend chips was in threadlike shape with the width of about 3 ㎛, and the PP phase for the blend sheets and films were spheroidal shape having the same sizes.
  1. Akiyama SL, Inoue UT, Nishi TO, "Polymer Blends," C.M.C., Tokyo (1981)
  2. Baker WE, Saleem M, Polym. Eng. Sci., 27, 1634 (1987) 
  3. Baker WE, Saleem M, Polymer, 28, 2057 (1987) 
  4. Fowler MW, Baker WE, Polym. Eng. Sci., 28, 1427 (1988) 
  5. Saleem M, Baker WE, J. Appl. Polym. Sci., 39, 655 (1990) 
  6. Liu NC, Xie HW, Baker WE, Polymer, 34, 4680 (1993) 
  7. Liu NC, Baker WE, Polymer, 35(5), 988 (1994) 
  8. Barlow JW, Paul DR, Polym. Eng. Sci., 24(8), 525 (1984) 
  9. Lambla M, Seadan M, Macromol. Symp., 69, 99 (1993)
  10. Liu NC, Xie HQ, Baker WE, Polymer, 34, 4680 (1993) 
  11. Hu GH, Sun YJ, Lambla M, J. Appl. Polym. Sci., 61(6), 1039 (1996) 
  12. Sun YJ, Hu GH, Lambla M, Kotlar HK, Polymer, 37(18), 4119 (1996) 
  13. Hu GH, Sun YJ, Lambla M, Polym. Eng. Sci., 36(5), 676 (1996) 
  14. Sun YJ, Hu GH, Lambla M, Angew. Makromol. Chem., 229, 1 (1995) 
  15. Sun YJ, Hu GH, Lambla M, J. Appl. Polym. Sci., 57(9), 1043 (1995) 
  16. Vainio T, Hu GH, Lambla M, Seppala JV, J. Appl. Polym. Sci., 61(5), 843 (1996) 
  17. Tsai CH, Chang FC, J. Appl. Polym. Sci., 61(2), 321 (1996) 
  18. Georgiev Y, Stoyanov S, Dimov K, Angew. Makromol. Chem., 122, 33 (1984) 
  19. Bataille P, Boisse S, Schreier HP, J. Elastomers Plast., 18(4), 228 (1986)
  20. Bataille P, Boisse S, Schreier HP, Polym. Eng. Sci., 27(9), 622 (1987) 
  21. Wilfong DL, Hiltner A, Baer E, J. Mater. Sci., 21(6), 2014 (1986) 
  22. Spreeuwers HR, VanderPol GMW, AP-28, Plast. Ruber Process, Appl., 11(3), 159 (1989)
  23. Nestrukh EV, Kuchinka MY, Izv. Vyssh. Ucheb. Zaved., Tekhnol. Legk. Prom. (Russ.), 6, 51 (1989)
  24. Vlsasov SV, Gagalaev GV, Filatov YM, Malyutina RS, Livin LS, Plast. Massy, 10, 52 (1973)
  25. Vlsasov SV, Sagalaev GV, Diligenskii YN, Kurakin LI, Plast. Massy, 2, 34 (1973)
  26. Vlsasov SV, Markov AV, Putyakov VF, Kolloidn. Zh, 45, 747 (1983)
  27. Koo PG, Kim SI, Park YH, Kim YC, Kim DK, Polym.(Korea), 21(4), 633 (1997)