화학공학소재연구정보센터
Energy Conversion and Management, Vol.49, No.2, 365-372, 2008
Fuel economy and torque tracking in camless engines through optimization of neural networks
The feed forward controller of a camless internal combustion engine is modeled by inverting a multi-input multi-output feed forward artificial neural network (ANN) model of the engine. The engine outputs, pumping loss and cylinder air charge, are related to the inputs, intake valve lift and closing timing, by the artificial neural network model, which is trained with historical input-output data. The controller selects the intake valve lift and closing timing that will mimimize the pumping loss and achieve engine torque tracking. Lower pumping loss means better fuel economy, whereas engine torque tracking gurantees the driver's torque demand. The inversion of the ANN is performed with the complex method constrained optimization. How the camless engine inverse controller can be augmented with adaptive techniques to maintain accuracy even when the engine parts degrade is discussed. The simulation results demonstrate the effectiveness of the developed camless engine controller. (C) 2007 Elsevier Ltd. All rights reserved.