화학공학소재연구정보센터
Polymer(Korea), Vol.21, No.6, 1045-1052, November, 1997
PEG/PEG-SO3를 함유한 항응혈성 공중합체의 합성 및 특성
Synthesis and Characteristics of Thromboresistang Copolymers Having PEG /PEG-SO 3
초록
새로운 혈액적합성 고분자재료로 사용하기 위해서 친수성/소수성 AB comb형태의 공중합체를 합성하였다. Poly(ethylene glycol) allylate (APEG)와 sulfonated poly(ethylene glycol) allylate (APEG-SO3)가 이 공중합체의 친수성 부분으로 사용되었고 octadecyl acrylate (OA)가 소수성 부분으로 사용되었다. 합성한 공중합체들의 구조는 FTIR, NMR 및 원소분석으로 확인하였으며 물리적 성질은 ATR-FTIR, 열분석, 점도 및 GPC로 분석하였다. 공중합체를 코팅한 폴리우레탄 재료로부터 표면의 특성과 혈액적합성을 평가하였나. PEG 및 PEG-SO3를 함유한 폴리우레탄 표면은 미처리 폴리우레탄에 비해서 친수성 표면을 나타내었다. 또한 in viro 혈소판 점착실험 결과, 공중합체로 처리한 표면이 미처리에 비해서 혈소판의 점착량이 감소하였으며 특히 PEG를 함유한 표면보다 음이온의 PEG-SO3를 함유한 표면이 더 적게 혈소판이 점착되어 혈액적합성이 더 향상되얹다. 따라서 본 연구에서 합성한 공중합체를 혈액과 접촉하는 고분자재료에 코팅하여 사용하면 혈액적합성이 향상될 것으로 기대된다
The amphiphilic random copolymers containing poly(ethylene glycol)(PEG)/ sulfonated poly(ethylene glycol)(PEG-SO3) have been developed hydrophilic component of PEG/PEG-SO3 and hydrophobic component of octadecyl acrylate (OA). These copolymers can be applied as coatings or processing additives for medical devices and implants. The structures of synthesized copolymers were confirmed by FTIR, NMR, and elemental analysis Physical results obtained from ATR-FTIR, thermal analysis, viscosity and GPC measurement demonstrated the characteristics of new copolymers. It was revealed from dynamic contact angle measurements that the surface of polyurethane (PU:) was more hydrophilic by coating with copolymers. From in vitro platelet adhesion studies, copolymers-coated PUs showed lower platelet adhesion than did untreated PU. In addition, lower platelets adhered on PEG SO3 surfaces as compared to PEG surfaces. Obtained results suggest the usefulness of copolymers as coating materials or surface modifying additives to improve the blood compatibility of medical devices.
  1. Tsuruta T, Hayashi T, Kataoka K, Ishihara K, Kimura Y, "Biomedical, Applications of Polymeric Materials," Chap. 3, CRC Press, Boca Raton (1993)
  2. Wilson JE, Plast. Technol. Eng., 16, 119 (1981)
  3. Dumitriu S, "Polymeric Biomaterials," Marcel Dekker, N.Y. (1994)
  4. Cohn EJ, Experimential, 3, 125 (1947) 
  5. Szycher M, "Biocompatible Polymers, Metals and Composites," Technomic, Lancaster (1974)
  6. Park JB, "Biomaterials Science and Engineering," Chap. 7, Plenum Press, N.Y. (1984)
  7. Park KD, Kim SW, "Biomedical Application of Polyethylene Glycol Chemistry," ed. by M. Harris, p. 283, Plenum Press, N.Y. (1992)
  8. Han DK, Jeong SY, Ahn KD, Kim YH, Min BG, J. Biomater. Sci.-Polym. Ed., 4, 579 (1993)
  9. Okano T, Nishiyama S, Tahara H, Akaike T, Sakurai Y, Kataoka K, Tsurata T, J. Biomed. Mater. Res., 15, 393 (1981) 
  10. Shimada M, Miyahara M, Tahara H, Shinohara I, Okano T, Kataoka K, Sakurai Y, Polym. J., 15, 649 (1983) 
  11. Lelah MD, Cooper SL, "Polyurethanes in Medicine," CRC Press, Boca Raton, FL (1986)
  12. Ishihara K, Oshida H, Endo Y, Ueda T, Watanabe A, Nakabayashi N, J. Biomed. Mater. Res., 26, 203 (1992)
  13. Nagaoka S, Mori Y, Takiuchi H, Yokota K, Tanzawa H, Nishumi S, "Polymer as Biomateirals," eds. by S.W. Shalaby, A.S. Hoffman, B.D. Ratner, and T.A. Horbett, p. 361, Plenum Press, N.Y. (1984)
  14. Bailey FE, Koleske JY, "Poly(ethylene oxide)," Academic Press, N.Y. (1976)
  15. Han DK, Jeong SY, Kim YH, Min BG, Cho HI, J. Biomed. Mater. Res., 25, 561 (1991) 
  16. Han DK, Park KD, Jeong SY, Kim YH, Kim UY, Min BG, J. Biomed. Mater. Res., 27, 1063 (1993) 
  17. Kim YH, Han DK, Park KD, "Encyclopedic Handbook of Biomaterials and Bioengineering," Part B: Application, eds. by D.L. Wise et al., vol. 2, p. 1071, Marcel Dekker, N.Y. (1995)
  18. Kim YH, Park KD, Han DK, "Polymeric Materials Encyclopedia," ed. by J.C. Salamone, Vol. 1, p. 825, CRC Press, Boca Raton, FL (1996)