International Journal of Control, Vol.81, No.8, 1319-1330, 2008
Robust adaptive control of uncertain non-linear systems using neural networks
This paper presents a robust adaptive output feedback control design method for uncertain non-affine non-linear systems, which does not rely on state estimation. The approach is applicable to systems with unknown but bounded dimensions and with known relative degree. A neural network is employed to approximate the unknown modelling error. In fact, a neural network is considered to approximate and adaptively make ineffective unknown plant non-linearities. An adaptive law for the weights in the hidden layer and the output layer of the neural network are also established so that the entire closed-loop system is stable in the sense of Lyapunov. Moreover, the robustness of the system against the approximation error of neural network is achieved with the aid of an additional adaptive robustifying control term. In addition, the tracking error is guaranteed to be uniformly and asymptotically stable, rather than uniformly ultimately bounded, by using this additional control term. The proposed control algorithm is relatively straightforward and no restrictive conditions on the design parameters for achieving the systems stability are required. The effectiveness of the proposed scheme is shown through simulations of a non-affine non-linear system with unmodelled dynamics, and is compared with a second-sliding mode controller.
Keywords:discontinuous controllers;output feedback;non-linear systems;adaptive control;neural networks