화학공학소재연구정보센터
International Journal of Energy Research, Vol.32, No.3, 264-271, 2008
Latent heat storage above 120 degrees C for applications in the industrial process heat sector and solar power generation
This paper is focussed on thermal storage technologies using phase change materials (PCMs) in the temperature range of 120-300 degrees C for solar thermal power generation and high temperature process heat. As the state-of-the-art reference system a steam accumulator is described, which typically has a volume-specific thermal energy density of 20-30 kWh m(-3). Regarding efficiency, a fundamental demand on thermal storage is the minimization of temperature differences between working fluid and storage medium. This requires isothermal storage systems for processes using water/steam. An obvious solution is, therefore, the application of PCMs. The selection of the PCMs depends strongly on the operation conditions of the respective application. At present, the main emphasis is directed to alkali metal nitrates and nitrites and their mixtures. For example, the eutectic mixture of the binary system KNO3-NaNO3 has been identified as an excellent system to be used for processes using saturated steam at around 25 bar. At around 5 bar the ternary system KNO3-NaNO2-NaNO3, commonly used as heat transfer fluid, can also be used as a PCM. To overcome the low thermal conductivity of the salt systems, approaches of increased surfaces area and increased thermal conductivity using expanded graphite (EG) have been investigated. Using EG/PCM composites, the effective thermal conductivity can be increased from below 0.5 to 3-20 W (mK)(-1). Three design concepts have been developed. In the macro-encapsulated design, the PCM is enclosed in metal tubes, giving a short distance for heat transfer and increasing the heat transfer area. In the second design, the heat exchanger tubes are embedded in EG/PCM-composite storage material. The third design option uses graphite foils arranged perpendicularly onto the heat exchanger tubes and a suitable salt system filled in between. The upgrade of existing steam accumulators using these PCM concepts is also proposed. Copyright (C) 2007 John Wiley & Sons, Ltd.