Journal of Applied Electrochemistry, Vol.38, No.5, 713-719, 2008
Electrodeposition of cobalt based ferro-magnetic metal nanowires in polycarbonate films with cylindrical nanochannels fabricated by heavy-ion-track etching
Polycarbonate films of thickness 30 mu m were irradiated with heavy ions by applying a flux of 10(8) ions cm(-2) to produce straight tracks perpendicular to the film surface. The tracks were preferentially etched in 6 M aqueous solution of sodium hydroxide to prepare cylindrical nanochannels. The channel diameters were tuned between 200 and 600 nm by varying the etching time. Co81Cu19 alloy nanowires were electrodeposited potentiostatically, while Co/Cu multilayered nanowires, consisting of alternating Co and Cu layers with thickness 10 nm, were synthesized by means of a pulse plating technique in channels of length 30 mu m and diameter 200 nm. Co81Cu19 alloy nanowires showed an anisotropic magnetoresistance effect of 0.6%, and the giant magnetoresistance of Co/Cu multilayered nanowires reached up to 8.0%.