화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.109, No.2, 805-812, 2008
Synthesis and characterization of interpenetrating polymer networks from polyurethane and poly(ethylene glycol) diacrylate
Interpenetrating polymer networks (IPNs) combining polyurethane (PU) and poly(ethylene glycol) diacrylate (PEGDA) networks were prepared with simultaneous polymerization. PU was synthesized from biocompatible and biodegradable poly(epsilon-caprolactone) diol, and the hydroxyl group of poly(ethylene glycol) was substituted with a crosslinkable acrylate group. The effects of the PU/PEGDA compositions and the crosslink density of PU and PEGDA on the thermal properties, swelling ratio, surface energy, mechanical properties, and morphologies were investigated. The mechanical properties of PEGDA networks were improved by the presence of PU networks, particularly in the 75% PU/25% PEGDA IPNs. All PU/PEGDA IPNs showed a microphase-separated structure with cocontinuous morphology, as observed by atomic force microscopy, which was in agreement with the results of swelling ratio and dynamic mechanical thermal analysis measurements. (C) 2008 Wiley Periodicals, Inc.