Polymer(Korea), Vol.22, No.3, 400-407, May, 1998
피롤/아닐린 고분자 복합체의 전기화학적 성질
Electrochemical Properties of Pyrrole/Aniline Polymer Composite
초록
피롤고분자(ppy)와 아닐린고분자(pan)로 된 두 성분의 고분자 복합체 전극을 전기화학적 방법으로 제작하기 위하여, 먼저 다공성 ppy피막을 백금(Pt)위에 중합한 후 그 다공성 피막내에 pan을 그 조성이 10-35%되게 끼워심기 중합하여 이 피막의 전기적 성질들을 개선시켰다. 이 때 전기적 중합속도를 Pt, Pt위에 ppy를 1.70 Ccm-2량으로 입힌 Pt/ppy, 그리고 Pt위에 Pan을 0.1130 Ccm-2 만큼 입힌 Pt/pan 회전판 전극들에서 측정하였다. 그 값은 Pt/ppy 전극에서 2.67×10-5cm/s로 Pt/pan 전극의 2.30 x 10-7cms-1보다 백배이상 크게 나타났다. Pt/ppy/pan (x) 전극의 순환전압 전류 특성은 고분자 가닥들의 polaron자리에 도핑된 이온이 ClO4-일 때보다 PF6-일 때 더 뚜렷하였다. 아닐린고분자 함량(x)이 0.2일 때 이 피막의 도핑준위가 52%까지 증가하였으며, 도핑/탈도핑 효율은 88%였고, 전기전도도는 x가 0.35일 때 331 Scm-1으로 ppy만일 때보다 다섯배나 증가하였다. 그러나 cyclability는 ppy만으로 된 경우에 비하여 75%까지 감소하였다.
Bi-Polymer film electrodes of Polypyrrole (ppy) and Polyaniline (pan) were prepared by electrochemical implantation into Porous ppy matrix with pan as level of 10 to 35% in order to improve the electrical properties. The rate constants of electropolymerization reactions were measured with smooth Pt, Pt covered with ppy (Pt/ppy), and Pt covered with pan (Pt/pan) of modified rotating disk electrode. The electropolymerization rate of pan polymer was faster on the Pt/ppy electrode as 2.67 x 10-5 cms-1 by a factor of hundred than 2.30×10-7 cms-1 of the Pt/pan. Cyclic voltammograms of Pt/ppy/pan (x) electrodes were quite different with the doping ions which were ClO4- and PF6-. The characteristic properties of redox reaction were more obvious at doped with PF6- ion. The amount of Pan in the ppy matrix enhanced the doping level of the electrode to 52% at pan content (x) of 0.2, doping/undoping efficiency to 88%, and the conductivity of the ppy/pan was 331 Scm-1 at x = 0.35. However the cyclability was reduced by 75%, relative to PPy alone.
- Skotheim TA, "Handbook of Conducting Polymers," Mercel Dekker Inc., vol. 1, Chap 3 (1986)
- Clarke JC, Scott JC, Street GB, IBM J. Res. Dev. B, 27, 313 (1983)
- Bredas C, Scott JC, Yahushi K, Street GB, Phys. Rev., B, Condens. Matter, 30, 1023 (1984)
- "Encyclopedia of Polymer Science & Engineering," vol. 13, p. 42, John Wiley & Sons, 2nd Ed. (1988)
- Osaka T, Naoi K, Ogano S, J. Electrochem. Soc., 135, 1071 (1988)
- Street GB, Lindsey SE, Nazzal AI, Wynne KJ, Mol. Cryst. Liq. Cryst., 118, 137 (1985)
- Bargan J, Mahmand S, Waltman RJ, IBM J. Res. Dev., 27, 330 (1983)
- Cha SK, Chung JJ, Cha CK, Abruna HD, J. Mater. Sci., 28, 6115 (1993)
- Yang R, Evans DF, Christansen L, Hendrickson WA, J. Phys. Chem., 94, 6117 (1990)
- Naoi K, Dsaka T, J. Electrochem. Soc., 134, 2479 (1987)
- Yaysuda Y, Sakai H, Sgano S, J. Chem. Soc. Jpn., 7, 1331 (1985)
- Osaka T, Naoi K, Sakai H, Ogano S, J. Electrochem. Soc., 134, 285 (1987)
- Cha SK, Choi KS, Ahn BK, Kang SJ, J. Korean Chem. Soc., 40, 467 (1996)
- Cha SK, J. Polym. Sci. B: Polym. Phys., 35(1), 165 (1997)
- Diaz AF, Kanazawa K, J. Chem. Soc.-Chem. Commun., 635 (1979)
- Focke WW, Whek GE, Wei Y, J. Phys. Chem., 91, 5813 (1987)
- Macero DJ, Janeiro RA, Anal. Chem., 27, 585 (1962)
- Wei Y, Sun Y, Tang X, J. Phys. Chem., 93, 4878 (1989)