화학공학소재연구정보센터
Journal of Materials Science, Vol.43, No.7, 2307-2315, 2008
Experimental evaluation of interactions in supercritical CO2/water/rock minerals system under geologic CO2 sequestration conditions
The hydrothermal autoclave experiments were conducted to simulate the interactions in the scCO(2)/water/rock minerals (quartz, biotite and granite) reaction systems using a Hastelloy C reaction cell at 100 degrees C. The dissolution characteristics of rock minerals and their surface texture alternation after hydrothermal treatment were examined by ICP-AES and SEM/EDX investigation, respectively. The results suggested that the hydrolysis of plagioclase phase should be mainly responsible for the elements dissolved from the Iidate granite samples. The dissolution was encouraged by the introduction of CO2 in the water/granite system, and generated an unknown aluminosilicate. No distinct chemical alternations occurred in the water-free scCO(2)/granite system, which indicated that rock minerals should be chemically stable in the water-free scCO(2) fluids under the current mild experimental conditions. Both the highest concentration of Ca existing in the scCO(2)/vapor/granite system and the SEM observation results of calcite deposit, suggested that a meaningful CO2 minerals trapping process should be potential in the CO2-rich field during a short physicochemical interaction period.