화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.112, No.13, 2870-2879, 2008
Influence of the central metal ion on nonlinear optical and two-photon absorption properties of push-pull transition metal porphyrins
We present a quantum-chemical analysis of the central metal ion's effect on first hyperpolarizabilities and two-photon absorption (TPA) cross sections at the infrared region of a series of push-pull porphyrins whose synthesis and NLO properties have been reported earlier (J. Am. Chem. Soc. 2005, 127, 9710). The molecular geometries are obtained via the B3LYP/6-31G(d,p) level optimization including SCRF/PCM approach, and the NLO and TPA properties are calculated with the ZINDO/CV method including solvent effects. It is found that the CT transition between the metal ion's d orbital and the macrocycle 7 orbitals plays an important role on NLO and TPA properties of metal porphyrins. Our data suggest a new approach to enhance TPA properties of porphyrin materials. We also present a quantum-chemical analysis on porphyrin dimers and trimers to understand the relationship between structural and collective NLO properties. It has been observed that beta values can be improved about an order of magnitude and TPA properties can be enhanced by 2 orders of magnitude by the formation of a trimer. The importance of our results with respect to the design of photonic and photodynamic therapy materials have been discussed.