Journal of Physical Chemistry A, Vol.112, No.18, 4284-4293, 2008
Free radical conformations and conversions in X-irradiated single crystals of L-cysteic acid by electron magnetic resonance and density functional theory studies
Single crystals Of L-cysteic acid monohydrate were X-irradiated and studied at 295 K using EPR, ENDOR, and EIE techniques. Three spectroscopically different radicals were observed. These were a deamination radical reduction product (RI), and two oxidation products formed by hydrogen abstraction (radicals R2, R3). R2 and R3 were shown to exhibit the same chemical structure while exhibiting very different geometrical conformations. Cluster DFT calculations at the 6-31G(d,p) level of theory supported the experimental observations for radicals RI and R2. It was not possible to simulate the R3 radical in any attempted cluster; hence, for this purpose a single molecule approach was used. The precursor radicals for R1, R2, and R3, identified in the low-temperature work on L-CySteic acid monohydrate by Box and Budzinski, were also investigated using DFT calculations. The experimentally determined EPR parameters for the low-temperature decarboxylated cation could only be reproduced correctly within the cluster when the carboxyl group remained in the proximity of the radical. Only one of the two observed low-temperature carboxyl anions (stable at 4 and 48 K) could be successfully simulated by the DFT calculations. Evidence is presented in support of the conclusions that the carboxyl reduction product already is protonated at 4 K and that the irreversible conversion between the two reduction products is brought forward by an umbrella-type inversion of the carboxyl group.