화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.112, No.11, 3339-3345, 2008
Electrostatic interactions between a protein and oppositely charged micelles
Micellar solutions made of a fully fluorinated surfactant, LiPFN, form water-soluble complexes with lysozyme in a wide concentration range. Such complexes are stabilized by electrostatic and, very presumably, double-layer interactions. The mixtures were investigated by combining electrophoretic mobility, DLS, and dielectric relaxation methods. The former gives information on the surface charge density of protein-micelle complexes and indicates that the resulting adducts retain a negative charge (i.e., charge neutralization is incomplete). The double-layer thickness of proteins, micelles, and protein-micelle complexes is also connected to the dielectric relaxation frequency. Changes in particle size (inferred by DLS), charge density, and double-layer thickness are closely interrelated to each other. A model was developed to quantify such properties.