화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.112, No.16, 4900-4912, 2008
UV-driven switching of chain orientation and liquid crystal alignment in nanoscale thin films of a novel polyimide bearing stilbene moieties in the backbone
A novel photosensitive polyimide, poly(4,4'-stilbenylene 4,4'-oxidiphthalimide) (ODPA-Stilbene PSPI) was newly synthesized. The most surprising feature of this PSPI is that the PSPI films irradiated with linear polarized ultraviolet light (LPUVL) can favorably induce a unidirectional alignment of liquid crystals (LCs) in contact with the film surface and further switch the director of the unidirectionally aligned LCs from a perpendicular direction to a parallel direction with respect to the polarization direction of LPUVL by simply controlling the exposure dose in the irradiation process. These LPUVL-irradiated films were found to provide high anchoring energy to LCs, always giving very stable, homogeneous cells with unidirectionally aligned LCs regardless of the LC alignment directions. In the films, the PSPI polymer chains were found to undergo favorably unidirectional orientation via a specific orientation sequence of the polymer chain segments led by the directionally selective trans-cis photoisomerization of the stilbene chromophore units in the backbone induced by LPUVL exposure. Such unidirectionally oriented polymer chains of the films induce alignment of the LCs along the orientation direction of the polymer chains via favorable anisotropic molecular interactions between the oriented polymer chain segments and the LC molecules. In addition, the PSPI has an excellent film formation processibility; good quality PSPI thin films with a smooth surface are easily produced by simple spin-coating of the soluble poly(amic acid) precursor and subsequent thermal imidization process. In summary, this new PSPI is the promising LC alignment layer candidate with rubbing-free processing for the production of advanced LC display devices, including LC display televisions with large display areas.