화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.15, No.4, 550-554, July, 2009
Synthesis and electrorheological characteristics of titanate nanotube suspensions under oscillatory shear
E-mail:,
In this study, titanate nanotubes (TNTs) were synthesized by hydrothermal treatment of TiO2 powders (P25) in a NaOH solution. The as-synthesized TNTs exhibit high surface area and large aspect ratio. Rheological properties of TNTs suspensions were then investigated under oscillatory shear. The TNTs fluid shows the viscoelastic behavior and the dynamic moduli (G', G") increase significantly by about 4 orders ofmagnitude as the electric field strength is up to 2.0 kV/mm. Transient response under dynamic shear reveals different changes in the microstructure of TNTs fluid from steady shear. The complex modulus of TNTs fluids is sensitive to temperature while that of P25 fluid become insensitive at higher temperature. Dynamic viscoelastic behavior suggests that structure of P25 to TNTs transition merits the enhancement of ER activity of TNTs fluid.
  1. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ, Adv. Mater., 15(5), 353 (2003)
  2. Puengjinda P, Sano N, Tanthapanichakoon W, Charinpanitkul T, J. Ind. Eng. Chem., 15(3), 375 (2009)
  3. Jeon M, Tomitsuka Y, Kamisako K, J. Ind. Eng. Chem., 14(6), 836 (2008)
  4. Lozano K, Hernandez C, Petty TW, Sigman MB, Korgel B, J. Colloid Interface Sci., 297(2), 618 (2006)
  5. Lin C, Shan JW, Phys. Fluids, 19, 121702 (2007)
  6. Wen W, Huang X, Yang S, Lu K, Shen P, Nat. Mater., 2, 727 (2003)
  7. Zhao XP, Yin JB, J. Ind. Eng. Chem., 12(2), 184 (2006)
  8. Kim DH, Kim YD, J. Ind. Eng. Chem., 13(6), 879 (2007)
  9. Hao T, Adv. Mater., 13(24), 1847 (2001)
  10. Hong SR, Choi SB, Han MS, Int. J. Mech. Sci., 44, 2027 (2002)
  11. Wang BX, Zhao XP, Adv. Funct. Mater., 15(11), 1815 (2005)
  12. Cheng Q, Pavlinek V, Lengalova A, Li C, Belza T, Saha P, Micropor. Mesopor. Mater., 94, 193 (2006)
  13. Hou J, Shi L, Zhu Q, J. Solid State Chem., 179, 1874 (2006)
  14. Kim JW, Liu F, Choi HJ, J. Ind. Eng. Chem., 8(4), 399 (2002)
  15. Kim ST, Lim JY, Park BJ, Choi HJ, Macromol. Chem. Phys., 208, 514 (2007)
  16. Fang FF, Choi HJ, Joo J, J. Nanosci. Nanotechnol., 8, 1559 (2008)
  17. Kim BS, Kim B, Suh KD, J. Polym. Sci. A: Polym. Chem., 46(3), 1058 (2008)
  18. Yin J, Zhao X, Nanotechnology, 17, 192 (2006)
  19. Yin J, Zhao X, Colloid Surf. A, 329, 153 (2008)
  20. Cho MS, Lee JH, Choi HJ, Ahn KH, Lee SJ, Jeon D, J. Mater. Sci., 39(4), 1377 (2004)
  21. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Adv. Mater., 11(15), 1307 (1999)
  22. Sing KSW, Everrett DH, Haul RAW, Moscow L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
  23. Wang G, Wang Q, Lu W, Li JH, J. Phys. Chem. B, 110(43), 22029 (2006)
  24. Sun X, Li Y, Chem. Eur. J., 9, 2229 (2003)
  25. Yu JG, Yu HG, Cheng B, Trapalis C, J. Mol. Catal. A-Chem., 249(1-2), 135 (2006)
  26. Cho MS, Choi HJ, Ahn WS, Langmuir, 20(1), 202 (2004)
  27. Kim SG, Kim JW, Cho MS, Choi HJ, Jhon MS, J. Appl. Polym. Sci., 79(1), 108 (2001)
  28. Tsuda K, Takeda Y, Ogura H, Otsubo Y, Colloid Surf. A: Physicochem. Eng. Asp., 299, 262 (2007)
  29. Puvanatvattana T, Chotpattananont D, Hiamtup P, Niamlang S, Sirivat A, Jamieson AM, React. Funct. Polym., 66, 1575 (2006)
  30. Puvanatvattana T, Chotpattananont D, Hiamtup P, Niamlang S, Kunanuruksapong R, Sirivat A, Jamieson AM, Mater. Sci. Eng. C, 28, 119 (2008)
  31. Block H, Rattay P, in: Havelka KO, Filisko FE (Eds.), Progress in Electrorheology, Plenum Press, New York, 1995, p. 19
  32. Ikazaki F, Kawai A, Uchida K, Kawakami T, Edamura K, Sakura K, Anzai H, Asako Y, J. Phys. D: Appl. Phys., 31, 336 (1998)
  33. Hao T, Kawai A, Ikazaki F, Langmuir, 14(5), 1256 (1998)
  34. Cheng CC, Teng H, Chem. Mater., 18, 367 (2006)
  35. Block H, Kelly JP, J. Phys. D: Appl. Phys., 21, 1661 (1988)
  36. Conrad H, Sprecher AF, Choi Y, Chen Y, J. Rheol., 35, 1393 (1991)