Journal of Industrial and Engineering Chemistry, Vol.15, No.4, 566-572, July, 2009
Effect of precipitants during the preparation of Cu-ZnO-Al2O3/Zr-ferrierite catalyst on the DME synthesis from syngas
E-mail:
The synthesis of dimethyl ether (DME) from biomass-derived model synthesis gas has been investigated on Cu-ZnO-Al2O3/Zr-ferrierite bifunctional catalysts. The catalysts are prepared by co-precipitation. impregnation method using Na2CO3, K2CO3 and (NH4)2CO3 as the precipitants. The catalytic activity tests reveal that the best yield of DME can be obtained on the catalyst precipitated by using (NH4)2CO3. Detailed characterization studies conducted on the catalysts to measure their properties such as surface area, acidity by temperature-programmed desorption of ammonia (NH3-TPD), reducibility of Cu oxide by temperature-programmed reduction (TPR), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and copper surface area and particle size measurements by N2O titration method. Increasing the number of moderate acidic sites and facilitation of easily reducible copper species with small particle size are found to be the prime reasons for the superior functionality of the (NH4)2CO3 precipitated catalyst. The usage of (NH4)2CO3 also leaves no residual ions, whereas the presence of residual K+ and Na+ ions in the case of K2CO3 and Na2CO3 precipitated catalysts leads to lower
activity and selectivity.
- Ruggiero M, Manfrida G, Renew. Energy, 16(1), 1106 (1999)
- Semelsberger TA, Borup RL, Greene HL, J. Power Sources, 156(2), 497 (2006)
- Cai GY, Liu ZM, Shi RM, He CQ, Yang LX, Sun CL, Chang YJ, Appl. Catal. A: Gen., 125(1), 29 (1995)
- Holladay JD, Wang Y, Jones E, Chem. Rev., 104(10), 4767 (2004)
- Lee S, Sardesai A, Top. Catal., 32, 197 (2005)
- Kim SD, Baek SC, Lee YJ, Jun KW, Kim MJ, Yoo IS, Appl. Catal. A: Gen., 309(1), 139 (2006)
- Li JL, Inui T, Appl. Catal. A: Gen., 137(1), 105 (1996)
- Ma L, Tran T, Wainwright MS, Top. Catal., 22, 295 (2003)
- Song D, Cho W, Park DK, Yoon ES, J. Ind. Eng. Chem., 13(5), 815 (2007)
- Li JL, Zhang XG, Inui T, Appl. Catal. A: Gen., 147(1), 23 (1996)
- Fei JH, Yang MX, Hou ZY, Zheng XM, Energy Fuels, 18(5), 1584 (2004)
- Xia JC, Mao DS, Zhang B, Chen QL, Tang Y, Catal. Lett., 98(4), 235 (2004)
- Takeguchi T, Yanagisawa K, Inui T, Inoue M, Appl. Catal. A: Gen., 192(2), 201 (2000)
- Mao DS, Yang WM, Xia JC, Zhang B, Song QY, Chen QL, J. Catal., 230(1), 140 (2005)
- Kang SH, Bae JW, Jun KW, Potdar HS, Catal. Commun, 9, 2035 (2008)
- Bae JW, Kang SH, Lee YJ, Jun KW, Appl. Catal. B: Environ., 90(3-4), 426 (2009)
- Prasad PSS, Bae JW, Kang SH, Lee YJ, Jun KW, Fuel Process. Technol., 89(12), 1281 (2008)
- Bae JW, Potdar HS, Kang SH, Jun KW, Energy Fuels, 22(1), 223 (2008)
- Evans JW, Wainwright MS, Bridgewater AJ, Yong DJ, Appl. Catal., 7, 75 (1983)
- Ng KL, Chadwick D, Toseland BA, Chem. Eng. Sci., 54(15-16), 3587 (1999)
- Jia GX, Tan YS, Han YZ, Ind. Eng. Chem. Res., 45(3), 1152 (2006)
- Kim HT, Jun KW, Kim SM, Potdar HS, Yoon YS, Energy Fuels, 20(5), 2170 (2006)
- Dong XF, Zou HB, Lin WM, Int. J. Hydrogen Energy, 31, 2337 (2006)
- Jin D, Zhu B, Hou Z, Fei J, Lou H, Zheng X, Fuel, 86, 2707 (2007)
- Okamoto Y, Fukino K, Imanaka T, Teranishi S, J. Phys. Chem., 87, 3740 (1983)
- Kerkhof FPJM, Moulijn JA, J. Phys. Chem., 83, 1612 (1979)