Macromolecular Research, Vol.17, No.10, 797-806, October, 2009
Mechanical and Thermal Behavior of Polyamide-6/Clay Nanocomposite Using Continuum-based Micromechanical Modeling
E-mail:
The mechanical and thermal behaviors of polyamide-6/clay nanocomposites were studied using the continuum-based, micromechanical models such as Mori-Tanaka, Halpin-Tsai and shear lag. Mechanic-based model prediction provides a better understanding regarding the dependence of the nanocomposites’ reinforcement efficiency on conventional filler structural parameters such as filler aspect ratio (α), filler orientation (S), filler weight fraction (ψf), and filler/matrix stiffness ratio (Ef /Em). For an intercalated and exfoliated nanocomposite, an effective, filler-based, micromechanical model that includes effective filler structural parameters, the number of platelets per stack (n) and the silicate inter-layer spacing (d001), is proposed to describe the mesoscopic intercalated filler and the nanoscopic exfoliated filler. The proposed model nicely captures the experimental modulus behaviors for both intercalated and exfoliated nanocomposites. In addition, the model prediction of the heat distortion temperature is examined for nanocomposites with different filler aspect ratio. The predicted heat distortion temperature appears to be reasonable compared to the heat distortion temperature obtained by experimental tests. Based on both the experimental results and model prediction, the reinforcement efficiency and heat resistance of the polyamide-6/clay nanocomposites definitely depend on both conventional (α, S, ψf, Ef /Em) and effective (n, d001) filler structural parameters.
Keywords:micromechanical model;heat distortion temperature;polyamide-6/clay nanocomposite;filler structural parameters
- Weon JI, Sue HJ, Polymer, 46(17), 6325 (2005)
- Jin HS, Chang JH, Kim JC, Macromol. Res., 16(6), 503 (2008)
- Sue HJ, Gam KT, Bestaoui N, Spurr N, Clearfield A, Chem. Mater., 16, 242 (2004)
- Hwang TY, Lee JW, Lee SM, Nam GJ, Macromol. Res., 17(2), 121 (2009)
- Choi M, Lim B, Jang J, Macromol. Res., 16(3), 200 (2008)
- Shepherd PD, Golemba FJ, Maine FW, Adv. Chem. Ser., 134, 41 (1974)
- Okada A, Fukushima Y, Kawasumi M, Inagaki S, Usuk A, Sugiyami S, Kurauchi T, Kamigaito O, US Patent 4739007 (1988)
- Kawasumi M, Kohzaki M, Kojima Y, Okada A, Kamigaito O, US Patent 4810734 (1989)
- Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O, J. Mater. Res., 8, 1179 (1993)
- Wang Y, Zhang L, Tang C, Yu D, J. Appl. Polym. Sci., 78, 1878 (2000)
- Fu X, Qutubuddin S, Polymer, 42(2), 807 (2001)
- Kim GM, Lee DH, Hoffmann B, Kressler J, Stoppelmann G, Polymer, 42, 1095 (2000)
- Fornes TD, Paul DR, Polymer, 44(17), 4993 (2003)
- Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes JI, Cohen RE, Polymer, 45(2), 487 (2004)
- Weon JI, Creasy TS, Sue HJ, Hsieh AJ, Polym. Eng. Sci., 45(3), 314 (2005)
- Creasy TS, Kang YS, J. Thermo. Comp. Mat., 17, 205 (2004)
- Weon JI, Xia ZY, Sue HJ, J. Polym. Sci. B: Polym. Phys., 43(24), 3555 (2005)
- Fornes TD, Yoon PJ, Keskkula H, Paul DR, Polymer, 42(25), 9929 (2001)
- Eshelby JD, Proc. R. Soc. A, 241, 376 (1957)
- Mori T, Tanaka K, Acta. Metall. Mater., 21, 571 (1973)
- Ashton JE, Halpin JC, Petit PH, Primer on Composite Materials: Analysis, Technomic, Westport (1969)
- Halpin JC, J. Compos. Mater., 3, 732 (1969)
- Halpin JC, Kardos JL, Polym. Eng. Sci., 16, 344 (1976)
- Adams A, Doner D, J. Compos. Mater., 1, 152 (1967)
- Hill R, J. Mech. Phys. Solids, 13, 213 (1965)
- Tandon GP, Weng GJ, Polym. Compos., 5, 327 (1984)
- Hill R, Proc. Phys. Soc. A, 65, 349 (1952)
- Tucker CL, Liang E, Compos. Sci. Technol., 59, 655 (1999)
- Cox HL, Br. J. Appl. Phys., 3, 72 (1952)
- van Es M, Xiqiao F, van Turnhout J, van der Giessen E, Specialty Polymer Additives: Principles and Applications, Al-Malaika S and Golovoy AW, Eds., Blackwell Science, CA Malden, MA, 2001, chapter 21
- Hull D, Clyne TW, An Introduction to Composite Materials, 2nd ed., Cambridge University Press, New York (1996)
- Xie SB, Zhang SM, Wang FS, Liu HJ, Yang MS, Polym. Eng. Sci., 45(9), 1247 (2005)
- Paul DR, Bucknall CB, Polymer Blends, Wiley, New York (2000)
- Pinnavaia TJ, Beall GW, Polymer-Clay Nanocomposites, Wiley, New York (2000)
- Manevitch OL, Rutledge GC, J. Phys. Chem. B, 108, 1428 (2003)
- Fornes TD, Polyamide-layered Silicate Nanocomposites by Melt Processing, PhD Dissertation, University of Texas at Austin (2003)
- van Olphen H, An Introduction to Clay Colloid Chemistry, for Clay Technologists, Geologists, and Soil Scientists, 2nd ed., Wiley, New York (1977)