화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.47, No.5, 558-564, October, 2009
고분자광섬유용 광통신 및 센서 모듈
Optical Communication and Sensing Modules for Plastic Optical Fibers
E-mail:
초록
고분자 광섬유(POF)는 유리광섬유에 비하여 경량성, 저가 그리고 다루기 쉬운 장점을 가지고 있다. 그러나 상대적으로 높은 전송손실과 낮은 대역특성으로 인하여 랜과 같은 단거리 네트워킹에 대한 사용이 적합하다. 전송손실을 낮게 하기 위한 고분자물질의 합성공정과 유연한 고분자광섬유의 활용을 보다 넓히기 위한 다양한 연구들이 진행되고 있다. 본 연구에서는 저잡음의 POF 모듈들이 개발되었으며, 이를 위하여 저잡음 증폭기와 저가의 650 nm의 발광다이오드(LED: Light Emitting Diode)가 최적화되었다. 광통신과 센서용 POF 모듈의 동적특성을 나타내기 위하여, 화상전송모듈, 광전송 속도측정모듈, RS-232용 광전송기와 음성전송모듈을 제작하여 그들의 신호특성을 평가하였다. 광전송 속도의 측정에 있어서는 빠르고 간단한 측정으로서 모듈이 바로 사용될 수 있는 것으로 보여진다. 또한, 아날로그 증폭기, LED와 포토다이오드(PD: Photo Diode) 등을 활용하여, 소리와 화상의 전송은 POF를 통하여 최대 60 m까지 가능한 것으로 확인되었다. 또한 비례적분미분제어에서 확인한 실시간 데이터 전송효과는 산업용 공장의 설계와 제어에 있어서 매우 가치가 있을 것으로 고려된다.
POF(Polymer optical fiber) offers advantages of lighter, inexpensive, and easier to use over GOF(glass optical fiber). Its higher transmission loss and low bandwidth, however, make it suitable only for short distance networking such as LAN. The polymer materials and its synthesis technology of low transmission loss and the broader application for flexible POF are the two of many critical areas to be investigated more. In the current study, low-noise POF modules are developed and optimized with a low noise amplifier and low cost LED of 650 nm. In order to demonstrate the dynamic characteristics of the POF module for optical communication and sensing, we have built an image transfer module, optical transmission speed measurement module, optical transceiver for RS-232, and sound-transfer module, and the signal characteristics of them are evaluated. It is found that the module can be readily used for a quick and simple measurement of optical transfer speed. With help of analog amplifier, LED, and PD, sound and image transfers through a maximum 60 m optical waveguide have been confirmed. Real-time data transfer was also demonstrated in PID control, which is thought to be valuable to industrial plant design and control.
  1. Kim EH, Lee KS, Chung HJ, The Magazine of IEEK, 29, 660 (2002)
  2. Hwang JT, Choi JS, Cho HS, Polym. Sci. Technol., 13(2), 168 (2002)
  3. Ishigure T, Nihei E, Koike Y, Applied Optics, 33, 4261 (1994)
  4. Boom HPA, Bennekom W, Monroy I, Khoe G, IEEE Journal on Selected Topics in Quantum Electronics, 7, 461 (2001)
  5. Koike Y, Ishigure T, Nihei E, J. Lightwave Technol., 13, 1475 (1995)
  6. Sunaga Y, Takahashi R, Tokoro T, Kobayashi M, IEEE Transactions on Advanced Packaging, 23, 176 (2000)
  7. Park S, Toumazou C, Papavassiliou C, Proc. IEEE International Symposium on Circuits and Systems, 433 (2000)
  8. Hecht J, Prentice Hall, Columbus (1999)
  9. Onishi T, Proc. 10th Int. Plastic Optical Fibers Conf.(Amsterdam, Sept. 27-30, 2001), pp.337-340
  10. Park BW, Yoon DY, Park S, Korean J. Chem. Eng., 25(1), 185 (2008)
  11. Bastida E, Corso V, Finardi C, Fischer RP, Electron. Lett., 33, 513 (1997)
  12. Ishigure T, J. Lightwave Technol., 20 (2002)
  13. Bluoss E, Zocher E, Ziemann O, Proc. POF 2001 Conference, 243 (2001)
  14. Kaino T, Jinguji K, Nara S, Appl. Phys. Lett., 42, 567 (1983)
  15. Chun HI, Shin YS, The Magazine of IEEK, 29, 638 (2002)