화학공학소재연구정보센터
Fluid Phase Equilibria, Vol.140, No.1-2, 37-51, 1997
Mixing rules for hardsphere chain mixtures and their extension to heteronuclear hardsphere polyatomic fluids and mixtures
Mixing rules are very important for the calculation of fluid properties using different equations of state. In order to find the theoretical lead of the mixing rule for the size parameter, a mixing rule [1] for hardsphere mixtures has been proposed on the basis of Carnahan-Starling equation and Boublik-Mansoori equation. As its extension, mixing rules for hardsphere chain mixtures are proposed in this work. A mixing rule for the segment number (or chain length) is derived on the Limitation of the equality of segment diameters, from the first order thermodynamic perturbation theories (TPT1) for pure chain fluids and for chain mixtures. Meanwhile, the mixing rule for the segment diameter is the same as the mixing rule for hardsphere mixtures on the limitation of monomer mixtures. The two mixing rules are checked together over wide ranges of conditions for hardsphere chain mixtures and compared with the first order thermodynamic perturbation theory (TPT1) and also with simulation data available in literature. An another interesting usage of new mixing rules is to describe the heteronuclear hardsphere polyatomic pure fluids, which consist of hardspheres with different segment diameters as in methane and ethane in which carbon and hydrogen atoms are looked as bonded spheres, and heteronuclear hardsphere polyatomic mixtures. The comparison with simulation data shows the validity of the mixing rules.