Chemical Engineering Science, Vol.64, No.7, 1488-1502, 2009
Analysis of pulsed microwave processing of polymer slabs supported with ceramic plates
A detailed theoretical analysis has been carried out to study the role of ceramic supports (alumina and SiC) and pulsed microwave heating of polymer (Natural Rubber, NR, and Nylon 66) slabs due to various distributions of microwave incidences. Ceramic plates are typical representations as they withstand high temperature without any deformation. It is found that ceramic plates influence the heating processes significantly and local hot spots within samples are governed by specific type of ceramic plates for various sample thicknesses and distributions of microwave incidence (one side or both sides). Optimized pulsing of microwave incidence has been employed to minimize the thermal runaway or hot spots in order to achieve uniform temperature distribution and pulsing is introduced based on two parameters: setpoint (Delta T-S) and on-off constraint (T'). Detailed spatial distributions of power and temperature are illustrated for a few representative length scales to demonstrate the role of local maxima in power and temperature on heating rate as well as thermal runaway with or without pulsing. Pulsing ratio (PR) has been defined as PR = t(off/)t(p), where t(off) is power-off time and t(p) is the total processing time such that smaller PR denotes large processing rates. It is found that one side incidence gives smaller values of PR for both the ceramic plates whereas SiC plate may be suitable for both sides incidence with large sample thicknesses of NR samples. It is also found that larger values of setpoints; also minimize PR. The setpoints along with the on-off constraint play critical role to select the heating strategy as a function of ceramic plates and types of incidence. Pulsing may not be important for smaller thicknesses of Nylon samples and SiC or alumina plates may be recommended for processing larger thicknesses of Nylon samples in presence of pulsing. Current study recommends the efficient microwave heating methodologies for polymer processing attached with ceramic plates by means of optimized pulsing for the first time. (c) 2008 Elsevier Ltd. All rights reserved.