화학공학소재연구정보센터
Inorganic Chemistry, Vol.48, No.21, 10455-10465, 2009
Elucidation of the Structure of a Highly Active Catalytic System for CO2/Epoxide Copolymerization: A salen-Cobaltate Complex of an Unusual Binding Mode
Salen-type ligands comprised of ethylenediamine or 1,2-cyclohexenediamine, along with an salicylaldehyde bearing a methyl substituent on its 3-position and a -[CR(CH2CH2CH2N+Bu3)(2)] (R = H or Me) on its 5-position, unexpectedly afford cobalt(III) complexes with uncoordinated imines. In these complexes, two salen-phenoxys and two 2,4-dinitrophenolates (DNPs), which counter the quaternary ammonium cations, coordinate persistently with cobalt, while two other DNPs are fluxional between a coordinated and an uncoordinated state in THF at room temperature. The complexes of this binding mode show excellent activities in carbon dioxide/propylene oxide copolymerization (TOF, 8 300-13 000 h(-1)) but with some fluctuation in induction times (1-10 h), depending on how dry the system is. The induction time is shortened (<1.0 h) and activity is Increased similar to 1.5 times upon the replacement of the two fluxional DNPs with 2,4-dinitrophenol-2,4-dinitrophenolate homoconjugation ([DNP center dot center dot center dot H center dot center dot center dot DNP](-)). Imposinig steric congestion either by replacing the methyl substituent on the salicylaldehyde with tert-butyl or by employing H2NCMe2CMe2NH2 instead of ethylenediamine or 1,2-cyclohexenediamine results in conventional imine-coordinating complexes, which show lower activities than uncoordinated imine complexes.