화학공학소재연구정보센터
Applied Biochemistry and Biotechnology, Vol.151, No.2-3, 547-555, 2008
Effect of Aeration on Production of Anticancer Lignans by Cell Suspension Cultures of Linum album
The effects of aeration within the range of 0.2-0.5 vvm on transformed and high yielding cell cultures of Linum album were investigated in a 5-L stirred tank bioreactor equipped with low shear Setric impeller. The kinetics of cell growth, substrate utilization, and production of lignans, namely, podophyllotoxin and 6-methoxypodophyllotoxin, were established. Maximum biomass of 23.2 g/L and lignan accumulation levels of 176.3 mg/L podophyllotoxin and 10.86 mg/L 6-methoxypodophyllotoxin were obtained with initial air flow rate of 0.3 vvm. Specified oxygen demand of cells was estimated to be 1.35 g O-2/g biomass. The optimum oxygen transfer coefficient was found to be 16.7 h(,)(-1) which corresponded to aeration rate of 0.3 vvm. The effect of minimum dissolved oxygen (DO) concentration was investigated with respect to biomass and lignan production by comparing identically aerated and agitated bioreactor cultivations at dissolved oxygen concentrations of 10%, 30%, and 50%. Cell growth and podophyllotoxin accumulation were not affected significantly at these DO levels, but 6-methoxypodophyllotoxin production was enhanced when cells were cultivated at 30% DO level. The maximum volumetric productivities of 18.2 mg/L day and 3.2 mg/L day for podophyllotoxin and 6-methoxypodophyllotoxin, respectively, were obtained. These results establish the key role of oxygen on mass scale production of anticancer lignans by cell cultures of L. album. It may serve as a suitable parameter for scale-up.