화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.15, No.5, 635-640, September, 2009
Characteristics of absorption/regeneration of CO2.SO2 binary systems into aqueous AMP + ammonia solutions
E-mail:
To examine the characteristics of absorption and regeneration, the simultaneous removal efficiency of carbon dioxide/sulfur dioxide (CO2/SO2), the CO2 absorption amount, and the CO2 loading value of an ammonia (NH3) solution added to 2-amino-2-methyl-1-propanol (AMP) were investigated using the continuous absorption and regeneration process. The performances of this system, such as the removal efficiency of CO2 and SO2, absorption amount, and CO2 loading, were evaluated under various operating conditions. Based on the experimental study, the optimum conditions were a liquid circulation rate of 90 mL/min and gas flow rate of 7.5 L/min. The addition of NH3 into aqueous AMP solution increased the absorption rate and loading ratio of CO2 and raised the removal efficiencies of CO2 and SO2 to over 90% and over 98%, respectively.
  1. IPCC, Policymaker’s Summary of the Scientific Assessment of Climate Change, Report to IPCC from Working Group, Meteorological Office, Branknell, UK (1990)
  2. Mofarahi M, Khojasteh Y, Khaledi H, Farahnak A, Energy, 33(8), 1311 (2008)
  3. Alie C, Backham L, Croiset E, Douglas PL, Energy Conv. Manag., 46(3), 475 (2005)
  4. Chris H, Carbon Dioxide Removal from Coal-fired Power Plants, Kluwer Academic Publishers, The Netherland (1994)
  5. Jung JH, Yoo KS, Kim HG, Lee HK, Shon BH, J. Ind. Eng. Chem., 13(4), 512 (2007)
  6. Mandala BP, Biswas AK, Bandyopadhyay SS, Chem. Eng. Sci., 58(18), 4137 (2003)
  7. Yeh AC, Bai H, Sci. Tot. Environ., 228, 121 (1999)
  8. Hong KH, Chang D, Kang SW, Hur JM, Han SB, Sunwoo Y, J. Ind. Eng. Chem., 14(4), 520 (2008)
  9. Yeh JT, Resnik KP, Rygle K, Pennline HW, Fuel Process. Technol., 86(14-15), 1533 (2005)
  10. Yih SM, Shen KP, Ind. Eng. Chem. Res., 27, 2237 (1988)
  11. Alper E, Ind. Eng. Chem. Res., 29, 1725 (1990)
  12. Saha AK, Bandyopadhyay SS, Biswas AK, Chem. Eng. Sci., 50(22), 3587 (1995)
  13. Messaoudi B, Sada E, J. Chem. Eng. Jpn., 29(1), 193 (1996)
  14. Lee DH, Choi WJ, Moon SJ, Ha SH, Kim IG, Oh KJ, Korean J. Chem. Eng., 25(2), 279 (2008)
  15. Aroonwilas A, Veawab A, Ind. Eng. Chem. Res., 43(9), 2228 (2004)
  16. Mandal BP, Bandyopadhyay SS, Chem. Eng. Sci., 61(16), 5440 (2006)
  17. Choi WJ, Cho KC, Lee SS, Shim JG, Hwang HR, Park SW, Oh KJ, Green Chem., 9, 594 (2007)
  18. Zhang P, Shi Y, Wei J, Zhao W, Ye Q, J. Environ. Sci., 20, 39 (2008)
  19. Li MH, Chang BC, J. Chem. Eng. Data, 40(1), 328 (1995)
  20. Danckwerts PV, Chem. Eng. Sci., 34, 443 (1979)
  21. Caplow M, J. Am. Chem. Soc., 90, 6795 (1968)
  22. Blauwhoff PMM, Versteeg GF, van Swaaij WPM, Chem. Eng. Sci., 38, 1411 (1983)
  23. Chakraborty AK, Astarita G, Bischoff KB, Chem. Eng. Sci., 41, 997 (1986)
  24. Bai HL, Yeh AC, Ind. Eng. Chem. Res., 36(6), 2490 (1997)
  25. Diao YF, Zheng XY, He BS, Chen CH, Xu XC, Energy Conv. Manag., 45(13-14), 2283 (2004)
  26. Hikita H, Asai A, Nose H, AIChE J., 24, 147 (1978)
  27. Hikita H, Asai S, Tsufi T, AIChE J., 23, 538 (1977)
  28. He BS, Zheng XY, Wen Y, Tong HL, Chen MQ, Chen CH, Energy Conv. Manag., 44(13), 2175 (2003)
  29. Veawab A, Aroonwilas A, Corros. Sci., 44, 967 (2002)