Applied Surface Science, Vol.254, No.22, 7259-7265, 2008
The effect of rf power on the growth of InN films by modified activated reactive evaporation
We report the effect of rf power on the structural, optical and electrical properties of InN films grown by modified activated reactive evaporation. In this technique, the substrates were kept on the cathode instead of ground electrode. The films grown at higher rf power shows preferential c-axis orientations for both silicon and glass substrates. The films prepared at 100W show best structural, electrical and optical properties. The c-axis lattice constant was found to decrease with increase in rf power which can be attributed to reduction in excess nitrogen in the films. The band gap decreases with increase in rf power due to Moss-Burstein shift. The decrease in carrier concentration and optical band gap with increase in rf power can also be related to excess nitrogen in the film. The Raman spectra shows a red shift in the A(1)(LO) and E-2 (high) mode from the reported value. The possible origin of the present large band gap is due to Moss-Burstein shift. The new film growth method opens opportunities for integrating novel substrate materials with group III nitride technologies. (C) 2008 Elsevier B.V. All rights reserved.