Applied Surface Science, Vol.254, No.22, 7356-7360, 2008
Growth, coalescence, and electrical resistivity of thin Pt films grown by dc magnetron sputtering on SiO2
Ultra thin platinum films were grown by dc magnetron sputtering on thermally oxidized Si (100) substrates. The electrical resistance of the films was monitored in situ during growth. The coalescence thickness was determined for various growth temperatures and found to increase from 1.1 nm for films grown at room temperature to 3.3 nm for films grown at 400 degrees C. A continuous film was formed at a thickness of 2.9 nm at room temperature and 7.5 nm at 400 degrees C. The room temperature electrical resistivity decreases with increased growth temperature, while the in-plain grain size and the surface roughness, measured with a scanning tunneling microscope (STM), increase. Furthermore, the temperature dependence of the film electrical resistance was explored at various stages during growth. (C) 2008 Elsevier B.V. All rights reserved.